عضو شوید


نام کاربری
رمز عبور

:: فراموشی رمز عبور؟

عضویت سریع

نام کاربری
رمز عبور
تکرار رمز
ایمیل
کد تصویری
براي اطلاع از آپيدت شدن وبلاگ در خبرنامه وبلاگ عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود



تاریخ : پنج شنبه 18 مرداد 1397
بازدید : 391
نویسنده : افزیر

 ﯾﮑﯽ از قدیمی‌ترین و رایج‌ترین اﻧﻮاع دستگاه‌های ﺳﺎﺧﺘﻤﺎﻧﯽ در ﺟﻬﺎن، ساختمان‌های ﺑﻨﺎﯾﯽ می‌باشند. به‌طوری‌که ﺑـﯿﺶ از 30 درﺻـﺪ ﺟﻤﻌﯿﺖ ﺟﻬﺎن در ساختمان‌های ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ﺳﺎﮐﻦ ﻫﺴﺘﻨﺪ. ﻋﻼوه ﺑﺮ اﯾﻦ در ﮐﺸﻮر ﻣﺎ ﻧﯿﺰ اﺳﺘﻔﺎده از ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ﻏﺎﻟﺒﺎً (به‌ویژه ﻧـﻮع آﺟـﺮی آن ﺑﺮای ﺳﺎﺧﺖ واﺣﺪﻫﺎی ﻣﺴﮑﻮﻧﯽ ﯾﮏ ﯾﺎ چندطبقه و ﯾﺎ واﺣﺪﻫﺎی ﺗﺠـﺎری و ﺗﻮﻟﯿـﺪی ، ﻣـﺪارس و بیمارستان‌های ﺷـﻬﺮﻫﺎی ﻣﺘﻮﺳـﻂ، ﮐﻮﭼـﮏ، بخش‌ها و روﺳﺘﺎﻫﺎ ﻣﺘﺪاول اﺳﺖ. ﻃﺒﻖ آﻣﺎر ارائه‌شده ﺗﻮﺳﻂ ﻣﺮﮐﺰ آﻣﺎر اﯾـﺮان، در ﺳـﺎل 1388، 78 درﺻـﺪ ساختمان‌های ﮐﺸـﻮر (به‌جز ﺷـﻬﺮ ﺗﻬﺮان) از آﺟﺮ ساخته‌شده‌اند ﮐﻪ ﻋﻤﺪﺗﺎً دارای دﯾﻮارﻫﺎی آﺟﺮی ﺑﺎرﺑﺮ و سقف‌های ﻃﺎق ﺿﺮﺑﯽ می‌باشند، ﻋﻠﺖ اﺻـﻠﯽ اﯾـﻦ ﮐـﺎرﺑﺮد وﺳـﯿﻊ، آﺳـﺎن ﺑﻮدن ﺗﻮﻟﯿﺪ آﺟﺮ، حمل‌ونقل ﻣﺘﺪاول، ﭘﺎﯾﯿﻦ ﺑﻮدن هزینه‌ها، ﻋﺪم ﻧﯿﺎز ﺑﻪ فنّاوری ﺑﺮﺗﺮ در ﻣﺮاﺣﻞ ساخت‌وساز، و ﻫﻤﭽﻨـﯿﻦ ﺗﺼـﻮر ﻋﻤـﻮﻣﯽ و ﮐﻠﯽ ﻣﺒﻨﯽ ﺑﺮ ﻋﺪم ﻧﯿﺎز ﺑﻪ ﺗﺨﺼﺺ وﯾﮋه در ﻫﻤﻪ ﻣﺮاﺣﻞ ﻓﻮق را می‌توان ﻧﺎم ﺑﺮد. نکته‌ای ﮐﻪ ﺑﺎﯾﺪ در ﻣﻮرد ساختمان‌های ﺑﻨﺎﯾﯽ ﺑـﻪ آن اﺷـﺎره ﮐـﺮد اﯾﻦ اﺳﺖ ﮐﻪ در اﺣﺪاث این‌گونه ساختمان‌ها در ﮐﺸﻮر، ﺿﻮاﺑﻂ و دستورالعمل‌های ﻣﺮﺑﻮط ﺑﻪ ﻓﺮآﯾﻨـﺪ ساخت‌وساز ﭼﻨـﺪان موردتوجه ﻗـﺮار ﻧﮕﺮﻓﺘـﻪ اﺳﺖ و ساختمان‌های ﻣﻮﺟﻮد ﺑﻨﺎﯾﯽ اﮐﺜﺮاً در ﺑﺮاﺑﺮ زﻟﺰﻟـﻪ آسیب‌پذیرند.

ساختمان‌های ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ﻏﯿﺮﻣﺴﻠﺢ ساختمان‌هایی ﻫﺴﺘﻨﺪ ﮐﻪ به‌جز دﯾﻮارﻫﺎی سازه‌ای (ﺑﺮﺷﯽ) ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ﻓﺎﻗﺪ ﺳﯿﺴﺘﻢ ﺳﺎز ه ای ﻣﺸﺨﺼﯽ می‌باشند. به ﺳﺨﻦ دﯾﮕﺮ، در  ساختمان‌های بنایی، دﯾﻮارﻫﺎی ﺑﺮﺷﯽ ﺑﻨﺎﯾﯽ وﻇﯿﻔﻪ ﺗﺤﻤﻞ ﻫﺮ دو ﻧﻮع ﺑﺎر ﺛﻘﻠﯽ و ﺟﺎﻧﺒﯽ زﻟﺰﻟﻪ را ﺑﺮ عهده‌دارند. ﻟﺬا در اﺳﺘﺎﻧﺪارد 2800 اﯾﺮان ﺑﺮای تأمین ﻧﯿﺎز ﻣﻘﺎوﻣﺖ ﺑﺮﺷﯽ ﺳﺎختمان ﻫﺎی ﺑﻨﺎﯾﯽ ﻏﯿﺮﻣﺴﻠﺢ در ﻫﺮ ﺟﻬﺖ، از ﻣﻔﻬﻮم ﺣﺪاﻗﻞ دﯾﻮار ﻧﺴﺒﯽ سازه‌ای استفاده‌شده اﺳﺖ. ﺑﺪﯾﻦ ﻣﻌﻨﯽ ﮐﻪ در هر ﯾﮏ از اﻣﺘﺪادﻫﺎی اﺻﻠﯽ ﺳﺎﺧﺘﻤﺎن ﺑﻨﺎﯾﯽ (ﺑﺎ ﮐﻼف و ﺑﯽ ﮐﻼف)، ﻣﻘﺪار دﯾﻮار ﻧﺴﺒﯽ ﻧﺒﺎﯾﺪ از ﻣﻘﺎدﯾﺮ ﻣﻨﺪرج در اﯾﻦ اﺳﺘﺎﻧﺪارد ﮐﻤﺘﺮ ﺑﺎﺷﺪ.

ساختمان‌های ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ، ﺑﻨﺎﻫﺎی ﺣﺠﯿﻤﯽ ﻫﺴﺘﻨﺪ ﮐﻪ ﺑﺎ ﻣﺼﺎﻟﺢ ﺳﻨﮕﯿﻦ ساخته‌شده‌اند و ﻧﯿﺮوی ﭼﺴﺒﻨﺪﮔﯽ ﺑﯿﻦ ﻣﺼﺎﻟﺢ و فرم‌های سازه‌ای ﺧﺎص وﻇﯿﻔﻪ اﻧﺘﻘﺎل ﻧﯿﺮوﻫﺎ و درنهایت ﭘﺎﯾﺪاری و ﻋﻤﻠﮑﺮد یکپارچه ﺑﻨﺎ را ﺑﺮ عهده‌دارند. ﻣﺼﺎﻟﺢ ﻣﻼت و آﺟﺮ در ﺑﺮاﺑﺮ ﻧﯿﺮوﻫﺎی ﻓﺸﺎری ﻋﻤﻠﮑﺮد ﺑﺴﯿﺎر ﺧﻮﺑﯽ دارﻧﺪ وﻟﯽ در ﺑﺮاﺑﺮ ﻧﯿﺮوﻫﺎی ﺟﺎﻧﺒﯽ و ﮐﺸﺸﯽ ﻣﻘﺎوﻣﺖ زﯾﺎدی ﻧﺪاﺷﺘﻪ و ﭘﺲ از رﺳﯿﺪن ﺑﻪ ﺣﺪاﮐﺜﺮ ﺗﻮان ﺧﻮد به‌یک‌باره ﺧﺮد می‌شوند. به‌عبارت‌دیگر ﻓﺎﻗﺪ ﺧﺎﺻﯿﺖ ﭘﻼﺳﺘﯿﮏ و شکل‌پذیری ﻫﺴﺘﻨﺪ.

ساختمان‌های که با آجر،سنگ و یا بلوک سیمانی ساخته‌شده‌اند و در آن ﺗﻤﺎم ﯾﺎ ﻗﺴﻤﺘﯽ از ﺑﺎرﻫﺎی ﻗﺎﺋﻢ ﺗﻮﺳﻂ دﯾﻮارﻫﺎی ﺑﺎ ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ تحمل می شود در ردﯾﻒ ساختمان‌های ﺑﺎ ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ﻣﺤﺴﻮب می‌شود. ﭘﺲ از ورود آﻫﻦ ﺑﻪ ﺑﺎزار اﯾﺮان ساختمان‌های ﺧﺸﺘﯽ و ﮔﻠﯽ ﺟﺎی ﺧﻮد را ﺑﻪ ساختمان‌های ﺑﻨﺎﯾﯽ ﺑﺪون ﮐﻼف دادﻧﺪ ﭘﺲ از اﻧﺘﺸﺎر آیین‌نامۀ 2800 ﺳﺎﺧﺖ ، ساختمان‌های ﺑﻨﺎﯾﯽ کلاف دار رواج ﭘﯿﺪا ﮐﺮد. ﻣﺸﺎﻫﺪات ﺑﻌﺪ از وﻗﻮع زﻟﺰﻟﻪ ﻧﺎﺷﯽ از اﯾﻦ اﺳﺖ، ﺳﺎﺧﺘﻤﺎﻧﻬﺎﯾﯽ ﮐﻪ ﺳﺎﺧﺖ آن‌ها ﻣﻨﻄﺒﻖ ﺑﺎ آیین‌نامه 2800 زﻟﺰﻟﻪ اﯾﺮان ﺑﻮده ﻫﻤﭽﻨﺎن ﺳﺮﭘﺎ ﺑﺮﺟﺎ ﻫﺴﺘﻨﺪ و ﺑﺮﺧﯽ هیچ‌گونه آﺳﯿﺒﯽ ندیده‌اند ﭘﺎﺑﺮﺟﺎﺋﯽ ساختمان‌ها و ﻋﺪم رﯾﺰش سقف‌ها و دﯾﻮارﻫﺎ ازاین‌جهت قابل‌بحث می‌باشند ﮐﻪ ﺑﺎﻋﺚ اﯾﺠﺎد ﻓﺮﺻﺖ ﻓﺮار و ﻋﺪم خسارت‌های ﺟﺎﻧﯽ در زﻟﺰﻟﻪ می‌شود ﮐﻪ اﯾﻤﻨﯽ را ﺑﺎ ﺧﻮد ﺑﻪ ﻫﻤﺮاه می‌آورد. هرچند ﮐﻪ در ﺣﺎل ﺣﺎﺿﺮ اﺣﺪاث ساختمان‌های دارای اﺳﮑﻠﺖ ﻓﻠﺰی و ﺑﺘﻨﯽ رو ﺑﻪ اﻓﺰاﯾﺶ اﺳﺖ، اﻣﺎ ﻫﻨﻮز ﻫﻢ اﮐﺜﺮﯾﺖ ساختمان‌های ﻣﻮﺟﻮد در ﮐﺸﻮر از ﻧﻮع ساختمان‌های ﺑﻨﺎﯾﯽ می‌باشند. ازآنجاکه راه‌حل ﺟﻠﻮﮔﯿﺮی از ﭼﻨﯿﻦ خسارت‌هایی، مقاوم سازی ساختمان‌های ﻣﻮﺟﻮد اﺳﺖ، ﻟﺰوم ﺑﺮرﺳﯽ در ﻣﻮرد شیوه‌های ﻣﺨﺘﻠﻒ ﺑﻬﺴﺎزی و مقاوم‌سازی ساختمان‌های ﺑﻨﺎﯾﯽ ﻣﻮﺟﻮد به‌شدت اﺣﺴﺎس می‌شود. ﺷﻨﺎﺧﺖ دﻗﯿﻖ اﻧﻮاع آسیب‌های وارده ﺑﻪ ﺳﺎﺧﺘﻤﺎن و ﯾﺎﻓﺘﻦ روش‌های ﻣﻨﺎﺳﺐ مقاوم‌سازی ﺑﺎ ﺗﻘﻮﯾﺖ قسمت‌های اﺻﻠﯽ و ﺑﺎرﺑﺮ ﺳﺎﺧﺘﻤﺎن و اﻓﺰودن ﻋﻨﺎﺻﺮ ﺑﺎرﺑﺮ اﺿﺎﻓﯽ و ﻧﻮع ﺳﺎزه ﺑﻨﺎﯾﯽ می‌تواند راﻫﯽ ﺑﺮای دﺳﺘﺮﺳﯽ ﺑﻪ اﯾﻤﻨﯽ ﺑﺎﻻﺗﺮ در ﻣﻘﺎﺑﻞ زﻟﺰﻟﻪ ﺑﺎﺷ.

ساختمان‌های مصالح بنایی

منظور از ساختمان‌های ﻣﺼﺎﻟﺢ  بنایی ساختمان‌هایی ﻫﺴﺘﻨﺪ ﮐﻪ ﺑﺎ آﺟﺮ,ﺑﻠﻮک ﺳﯿﻤﺎﻧﯽ ﯾﺎ ﺳﻨﮓ ﯾﺎ ﺧﺸﺖ ﺳﺎﺧﺘﻪ می‌شوند و در آن‌ها ﺗﻤﺎم ﯾﺎ ﻗﺴﻤﺘﯽ از ﺑﺎرﻫﺎی ﻗﺎﺋﻢ ﺗﻮﺳﻂ دﯾﻮارﻫﺎ ﺑﺎ ﻣﺼﺎﻟﺢ ﺑﻨﺎﯾﯽ ﺗﺤﻤﻞ می‌گردد.ساختمان‌های ﺑﻨﺎﯾﯽ را می‌توان به دودسته ساختمان‌های ﺑﻨﺎﯾﯽ ﮐﻼف ﺑﻨﺪی ﺷﺪه و ساختمان‌های ﺑﺪون ﮐﻼف ﺑﻨﺪی ﺗﻘﺴﯿﻢ ﮐﺮد.

رفتار کلی ساختمان های بنایی در برابر نیروها

رفتار ساختمان‌های بنایی به عواملی مانند نیروی چسبندگی مصالح ساختمانی بستگی دارد که باعث پیچیدگی در بررسی رفتار سازه بنایی شده است.

ازآنجاکه ﻣﺼﺎﻟﺢ آﺟﺮ و ﻣﻼت به‌شدت ﺗﺮد ﻫﺴﺘﻨﺪ هنگامی‌که ﺗﺤﺖ اﺛﺮ ﻧﯿﺮو ﻗﺮار می‌گیرند ﭘﺲ از رﺳﯿﺪن ﺑﻪ ﺣﺪاﮐﺜﺮ ﻣﻘﺎوﻣﺖ ﺧﻮد، یک‌باره دﭼﺎر ﺷﮑﺴﺖ ﺷﺪه و ﺧﺮد می‌شوند، برخلاف ﺑﺘﻦ ﻣﺴﻠﺢ و ﻓﻮﻻد ﮐﻪ ﭘﺲ از رﺳﯿﺪن ﺑﻪ ﺣﺪاﮐﺜﺮ ﻣﻘﺎوﻣﺖ ﺧﻮد وارد ﻣﺮﺣﻠﻪ اﻻﺳﺘﻮ ﭘﻼﺳﺘﯿﮏ و ﺳﭙﺲ ﭘﻼﺳﺘﯿﮏ ﺷﺪه و ﺗﻐﯿﯿﺮ شکل‌های قابل‌توجهی ﺧﻮاﻫﻨﺪ داد.

درنتیجه ﺿﻌﻒ اﺳﺎﺳﯽ ساختمان‌های آﺟﺮی در ﻣﻘﺎﺑﻞ زﻟﺰﻟﻪ، ﮐﻤﺒﻮد ﻣﻘﺎوﻣﺖ ﻧﯿﺴﺖ، ﺑﻠﮑﻪ ﮐﻤﺒﻮد ﻧﺮﻣﯽ (شکل‌پذیری) اﺳﺖ ﻣﯿﺰان ﺧﺴﺎرت سازه‌های ﻧﺮم ﺗﺎ ﺣﺪودی ﺗﺎﺑﻊ ﺑﺰرﮔﯽ زﻟﺰﻟﻪ اﺳﺖ و در زلزله‌ای ﺑﺴﯿﺎر ﻣﺨﺮب ﺑﺎ ﺑﺰرﮔﯽ ﺑﯿﺶ از7 ، در ﻧﺎﺣﯿﮥ ﻣﺮﮐﺰی زﻟﺰﻟﻪ ﺑﯿﺸﺘﺮﯾﻦ آﺳﯿﺐ ﻣﺸﺎﻫﺪه می‌شود و از ﻣﺮﮐﺰ ﮐﻪ دور می‌شویم به‌تدریج از ﺷﺪت آﺳﯿﺐ ﮐﺎﺳﺘﻪ می‌شود.

مقاوم‌سازی ساختمان های بنایی

عوامل مؤثر در تخریب ساختمان‌ها با مصالح بنایی:

استفاده از آجرهای بی کفیت

استفاده از ملات سست و ضعیف

بی‌نظمی در پلان در جهت عمودی

ضعف دیوارهای باربر

کمبود المان‌های عمودی محدود کننده

وجود کنسول و بالکن نامناسب

خسارات مشاهده شده در ساختمان‌های بنایی

اﯾﺠﺎد ﺗﺮک و ﺟﺪا ﺷﺪن دیوارها از ﯾﮑﺪﯾﮕﺮ

فروریختن ﺧﺎرج از ﺻﻔﺤﻪ دﯾﻮارﻫﺎ

اﯾﺠﺎد ترک‌های ﻣﻮرب ﮐﺸﺸﯽ در ﮐﻨﺎر بازشوها

ﻓﺮورﯾﺨﺘﻦ دﯾﻮارﻫﺎی ﺑﺎرﺑﺮ و سقف‌ها

از ﺑﯿﻦ رﻓﺘﻦ اﻧﺴﺠﺎم ﺳﻘﻒ و فروریزش آﺟﺮﻫﺎی ﻃﺎق ﺿﺮﺑﯽ

ﺧﺴﺎرت در ﮔﻮﺷﻪ ﺳﺎﺧﺘﻤﺎن و فروریختگی ﺟﺰﺋﯽ

روش‌ها مقاوم‌سازی ساختمان‌های بنایی

1. ﯾﮑﭙﺎرﭼﻪ ﺳﺎﺧﺘﻦ ﺳﻘﻒ

سقف طاق ضربي بايد منسجم و در صورت نياز صلب گردد. در سقف هاي طاق ضربي براي ايجاد انسجام و يكپارچگي از روش هاي زير استفاده مي شود:

1.1 ابتدا خاك، سنگ و نخاله روي آجرها را برداشته و مطابق شكل ميلگردهايي را به تيرها جوش مي دهند. سپس روي سقف بتن ریزی شده تا پوششي به ضخامت حداقل 5 سانتی متر روی تیرها ایجاد شود.

در مواردي كه استفاده از روش فوق ميسر و اقتصادي نباشد مي توان از روشهاي ديگر استفاده نمود، البته درجه صلبيت به اندازه روش گفته شده در بالا افزايش نمي يابد.

بهسازی سقف با بتن رویه 

      1.2 اندود سقف را از داخل هر اتاق به صورت ضربدري برداشته می شود و يك جفت ميلگرد نمره 8 یا تسمه را مطابق با شکل، به زیر تیر آهن ها جوش داده می شود.

بهسازي سقف با تسمه فولادي

   1.3 روي ديوارهاي باربر، فاصله بين تيرها را تميز كرده پس از جوش دادن سه ميلگرد نمره 18 به تیرها روی آنها بتن ریزی به گونه ای انجام می شود که کلاف افقی به ارتفاع حداقل 25سانتی متر ایجاد شود.

 بهسازی سقف با ایجاد کلاف جدید

2. روش و تکنیک مقاوم سازی با FRP

تكنيك پايه مقاوم سازي با FRP كه در طيف گسترده اي به كار مي رود، شامل روش چسباندن نوارهاي توليد شده پيش ساخته است. نكته اي كه در اينجا وجود دارد اين است كه در راستاي نوارهاي FRP و يا اليافي كه به كمك رزين در محل به كامپوزيت FRP تبدیل می شوند، بايد تا حدي كه امكان اجرايي وجود دارد، در جهت محور اصلي تنشهاي كششي عضو باشد.

2.1 تقويت ديوارهاي آجري بدون اعضاي بتني يا فولادي محيطي

الف: تقویت برشی

دیوارهایی که نسبت بعدی (ارتفاع به طول) کمی دارند دچار شکست برشی شده و ترک های قطری در آنها ظاهر می شوند. مود شکست در این حالت به صورت ترد در دیوار رخ می دهد.

برای جبران ضعف برشی دیوار، صفحات FRP در راستای طول دیوار و به صورت افقی در دو وجه دیوار نصب می گردد. نحوه عملکرد FRP بدین صورت می باشد که پس از ایجاد ترک های برشی در دیوار، کرنش در ّFRP در آن منطقه افزایش یافته و نیروها به FRP منتقل می گردد. نتایج نشان میدهد تقویت برشی دیوار با FRP سبب افزایش مقاومت و شکل پذیری دیوار می گردد.

تقویت برشی دیوار با FRP

ب: تقویت خمشی

برای جبران ضعف خمشی دیوار، صفحات FRP در راستای ارتفاع و به صورت قائم در دو طرف نصب می گردد.

تقویت خمشی دیوار با FRP

در صورتی که FRP به منظور افزايش مقاومت خمشي بر روي ديوار به صورت ارتفاعي استفاده شود، لازم است كه انتهاي آن به نحو مناسبي در پاي ديوار مهار گردد تا نيروهاي درون اين صفحات به تكيه گاه پاي ديوار انتقال يابد. براي مهار انتهاي صفحات خمشي مي توان از مقطع نبشي فولادي در مجاورت تكيه گاه ديوار كه بر آن پيچ مي گردد و يا از صفحه برشي FRP عمود بر لایه FRP خمشی در انتهای لایه استفاده نمود.

در صورتيكه از هر دو تقويت خمشي و برشي به صورت قرارگيري الياف به طور افقي و عمودي بر روي ديوار به صورت توام استفاده گردد افزايش سختي، مقاومت و شكل پذيري بيشتر از حالتهاي قبل است. در اين سيستم قرارگيري الياف به صورت افقي خود مهار كننده الياف خمشي مي باشند.

تقويت برشي و خمشي همزمان با استفاده FRP

3. روكش بتني

يكي از روشهاي موثر تقويت ساختمانهاي موجود ايجاد روكش بتني روي ديوارهاست. در اين روش شبكه اي از ميلگردهاي افقي و قائم روي ديوار نصب مي شود و سپس بر روي آن بتن مي پاشند.
استفاده از روكش بتني براي سازه هاي بتني و آجري نتايج مفيدي دربرداشته و تجربه نشان م يدهد كه بتن پاشيده شده به خوبي درزها را پر كرده، اتصال  مناسبي را فراهم مي آورد. در اين روش سطوح آجري كاملاً تميز مي شوند و براي ايجاد چسبندگي بيشتر سطوح صاف زخمي مي گردند. قبل از پاشيدن بتن، زيركار را كمي تر مي كنند اما نه چندان كه بتن فرو ريزد.
همچنين قبل از شروع، قسمتهايي از زيركار را كه خرد شده يا سست است تراشيده و عمل پاشش در چند لايه صورت مي گيرد تا گودشدگي به حداقل برسد و در نقاطي كه پاشش خوب انجام نشده و به عوارضي همچون گودشدگي، برآمدگي و يا پوسته شدن، انجاميده است بتن تراشيده، دوباره پاشيده مي شود.
با ايجاد روكش بتني در سطوح بيروني يا دروني ديوارهاي آجري مي توان مقاومت لرزه اي ساختمان را به طور چشمگيري افزايش داد، آنگاه اين ديوارهاي آجري- بتني مي توانند مانند ديوارهاي برشي بتني نيروي جانبي زلزله را بگيرند.
براي ايجاد روكش بتني بايد در ديوار شيارهاي قائم ايجاد كرد تا پس از پاشيدن بتن اين شيارها همچون كلاف قائم عمل كرده و علاوه بر تقويت مقاومت خمشي ديوار، روكش بتني و ديوار آجري را به طور مناسبي با هم يكپارچه كنند.

اجراي كلاف با روكش بتني

فاصله کلاف های قائم S می تواند بین 2 تا  2.5 متر باشد. در کنار بازشوها حتما باید کلاف قائم قرار گیرد. ایجاد کلاف افقی گرچه می تواند عملكرد روكش را بهبود بخشد اما به سبب آنكه بارهاي قائم به ديوار آجري وارد مي شوند، كندن شيار افقي مي تواند خطرناك باشد و لذا استفاده از كلافهاي افقي ايجاد شده با روكش بتني توصيه نمي شود.
در موردي كه ايجاد روكش در سطوح بيروني ممكن نباشد بايد سطوح داخلي را روكش كرد. بايد توجه داشت كه در محل اتصال ديوار به سقف، روكش قطع مي شود و در نتيجه نيروهاي خمشي وارد به روكش در طبقه بالا به طبقه پايين منتقل نمي شوند.

4. استقرار ديوارهاي جديد

در حين زلزله، ساختمانهاي نامتقارن در معرض اثرات پيچش واقع مي شوند. با جداسازي قسمتهايي از ساختمان مي توان مركز جرم را بر مركز سختي منطبق نمود كه در اين صورت پيچش در ساختمان اتفاق نمي افتد. همچنين با ايجاد ديوارهاي جديد (مصالح بنایی) مانند شکل 14 می توان واحدهایی را به طور اختصاصی قرینه نمود (شکل14).

ضمناً استقرار ديوارهاي متقاطع، قدرت باربري بيشتري براي ديوارهاي طويل ساختمانهايي نظيرخوابگاهها، مدارس و غيره فراهم مي نمايد. تنها بايد دقت شود كه تغييرات معماري بوجود آمده باعث از بين رفتن كاربري هاي مدنظر نگردد.

ايجاد ديوار جديد و رفع نامنظمي در پلان

مساله اصلي در اين چنين اصلاحاتي، ايجاد گيرداري بين ديوارهاي جديد و قديم مي باشد. عموماً با استفاده از كليدهاي فولادي و بتني تعبيه شده در ديوارهاي قديمي اين گيرداري تامين مي شود.
در استقرار ديوارهاي جديد بايد به يك نكته توجه داشت كه ديوار جديد بايد در طول مدت بهره برداري ساختمان مستقر بوده و هيچگاه برداشته نشود. بنابراين در مقاوم سازي ساختمانهايي كه امكان تغيير كاربري دارند بايد همواره به اين نكته توجه نمود كه پس از تغييرات كاربري ديوارهاي جديد از معماري ساختمان حذف نشود.

 

منبع : افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , ,
تاریخ : چهار شنبه 17 مرداد 1397
بازدید : 363
نویسنده : افزیر

 

 

 

 

بسیاری از سازه های بتن‌آرمه یا به اصطلاح بتنی به دلایل مختلفی از جمله خطاهای حین طراحی و یا ساخت،

تغییر کاربری سازه و از دست رفتن بخشی از ظرفیت سازه به علت خوردگی میلگردهای فولادی نیاز به مقاوم سازی،

ترمیم، تقویت و بهسازی پیدا می‌کنند. یافتن راه حل مناسبی جهت مقاوم سازی سازه های بتنی و ارتقای

ظرفیت باربری چنین سازه‌ هایی همواره دغدغه‌ طراحان و مجریان سازه‌ها بوده است.

 

 

 

 

دلایل مقاوم سازی سازه های بتنی

سازه های بتنی به عنوان بخش گسترده ای از سازه ها چنانچه بر حسب محاسبات دقیق و روابط شکل پذیری طراحی و اجرا شوند ساختمان های بسیار مطلوبی خواهند بود اما کیفیت ساخت در برخی سازه ها به دلایل مختلف بسیار نامطلوب است.

کیفیت بد بتن، آرماتور گذاری نامناسب، اجرای بد بتن ریزی، مصالح نامرغوب، خطاهای طراحی، خطاهای اجرایی، افزایش بار سازه، تاثیر شرایط محیطی مخرب و خطر زلزله در اکثر نقاط کشور ایران از جمله عواملی هستند که باعث ضعف سازه های بتنی می شوند.

جهت بررسی مقاوم سازی سازه های بتنی، بدون تردید شناسایی گونه‌های مختلف خسارت در ساختمان های بتنی امری مهم و اجتناب ناپذیر می‌باشد. بنابراین انواع مختلف ضعف‌های سازه های بتنی به شرح زیر می‌باشد:

  • ضعف های سازه های بتنی
  • ایجاد ترک های مورب در هسته بتن
  • ورقه ورقه شدگی هسته مرکزی بتن دراکثر ترکهای مورب رفت و برگشتی ناشی از زلزله
  • جدا شدگی پوشش بتن
  • کنده شدن تنگها و خاموتها و خارج شدن از محل های خود
  • شکست برشی المان‌های کوتاه یا اعضایی که به اطراف متصل شده اند و طول موثر آزاد آنها کم است.
  • پدیده کمانش در آرماتورهای طولی
  • خارج شدن میلگردها از محل‌های اولیه و در رفتن به نواحی تنش های متناوب زیاد
  • گسیخته شدگی دال ها بتن آرمه در کناره های غیر ممتد
  • ترک های مورب در دیوار برشی، بخصوصبه صورت متمرکز در اطراف بازشوها
  • ایجاد ترک برشی در محل گره ها و محل اتصال تیر ستون

بتن مصالح ساختمانی با مقاومت فشاری نسبتا خوب و مقاومت کششی پایین است و در صورتی که عضو بتنی بدون میلگرد در نظر گرفته شود با اعمال بار در عضو ترک خوردگی ایجاد شده و این ترک خوردگی تا تخریب نهایی عضو پیش می رود (گسیختگی بتن تنها به صورت ترد و ناگهانی می باشد). در بتن مسلح با استفاده از آرماتورهای تقویت کششی این مشکل بر طرف می‌گردد. این مسئله از جمله نقاط ضعف سازه های بتنی مسلح و پیچیدگی آن در امر تقویت سازه های بتنی، ترمیم و مقاوم سازی آن می باشد. ارزیابی و انتخاب مصالح تعمیری موجود مرحله دشواری در تعمیر بتن و بازسازی بتن می باشد ضرورت تعداد بیشمار مصالح تعمیری و تقویتی جدید در سال‌های اخیر، باعث توسعه روشهای مختلف مقاوم سازی سازه های بتنی شده است می‌باشد

یکی از ایده های ابتدایی و تکنیک‌های مرسوم بهسازی و مقاوم سازی سازه های بتنی و تقویت سازه‌ها، شکافتن پوشش بتنی عضو سازه ای و قرار دادن میلگردهای فولادی اضافی در المان و سپس پوشاندن آن قسمت به وسیله‌ چسب‌ها و رزین های پر مقاومت بوده است. این ایده علی رغم آنکه ظرفیت سازه را مقداری بهبود می‌بخشد لیکن هم چنان مشکل خوردگی میلگردهای فولادی را بی پاسخ می‌گذارد؛ تکنیک دیگری که برای تقویت سازه های بتنی مورد استفاده قرار می‌گیرد، بکارگیری ورق های فولادی یا تکنیک ژاکت فولادی هست که در آن ورقهای فولادی از بیرون به اجزاء بتنی چسبانده می‌گردد. روش اتصال ورق فولادی، روشی ساده و اقتصادی است؛ اما از جهات زیر مسئله‌ ساز است:

  • وزن بالای ورق های فولادی و مشکلات ساخت این اجزاء
  • دسترسی سخت به اجزاء و نیاز داشتن داربست
  • ضعف ایجاد شده در چسبندگی بین فولاد و بتن که ناشی از خوردگی فولاد می‌باشد
  • داشتن محدودیت طولی در انتقال ورقهای فولادی به کارگاه با توجه به این نکته که در پروژه های مقاوم سازی سازه های بتنی، طولهای تیر عموماً بلند می‌باشند.

روش سنتی دیگر در مقاوم ‌سازی سازه های بتنی، استفاده از ژاکت های بتنی یا پوشش‌هایی از نوع بتن‌آرمه، می‌باشد. استفاده از این روش سبب افزایش سختی و شکل ‌پذیری و در مجموع تقویت سازه های بتنی می‌باشد؛ از ضعف های این روش افزایش ابعاد مقاطع و بار مرده سازه بتنی می‌باشد. استفاده از این روش همچنین نیازمند تخلیه ساختمان و تخریبهای زیاد سازه بتنی است و باعث افزایش نامطلوب سختی اعضای بتنی می‌گردد.

با توجه به موارد اشاره شده، در امر مقاوم سازی سازه های بتنی نیاز به مصالحی احساس می‌شود که علاوه بر افزایش مناسب ظرفیت سازه بتواند در مقابل شرایط محیطی نامساعد نیز دوام خوبی را برای بتن از خود نشان دهد. گسترش تکنولوژی های جدید علم مواد و پلیمرها با مشخصات مکانیکی مختلف، جامعه مهندسی را برآن داشته تا از قابلیت‌ها و کاربردهای متنوع محصولات پلیمری و کامپوزیتی استفاده نموده و جایگزینی آنها را با مصالح و مواد سنتی اجتناب ناپذیر ساخته است. با ورود پلیمرهای مسلح شده با الیاف FRP به صنعت ساختمان، به عنوان یکی از جالب‌ترین و نوید بخش ترین فناوری‌ها، بسیاری از مشکلات فراروی فعالان امر بهسازی مقاوم سازی سازه های بتنی برطرف شد و روش‌های نوینی در زمینه‌ تقویت و ترمیم سازه‌ های بتنی پدیدار گشت. در این روش‌ها از اشکال مختلف مصالح FRP نظیر الیاف، ورقه و آرماتور به منظور بهبود ظرفیت باربری، ترمیم، تقویت و مقاوم سازی سازه‌ ها بتنی استفاده می‌گردد.

همانگونه که اشاره شد، مصالح کامپوزیتی FRP، کاربردهای فرآوانی را برای مقاوم ‌سازی سازه های بتنی به ‌خود اختصاص داده است. FRP ماده کامپوزیتی با مقاومت کششی بالاست که با رزین آغشته می‌گردد و بدلیل مقاومت کششی بالا، وزن پایین و دوام مناسب (در مقابل خوردگی و شرایط محیطی سخت) دارای کاربرد گسترده‌ای در مقاوم سازی سازه های بتنی در مقابل نیروی زلزله است. از این رو استفاده از ورق FRP در سال های اخیر، گزینه مناسبی جهت تقویت و مقاوم سازی ساختمان های بتنی بوده است. سهولت استفاده، عدم نیاز به نیروی کار ماهر، سبکی و مقاومت کم، FRP را راهکار مناسبی جهت ترمیم سازه های بتنی، تقویت و مقاوم سازی بدون بر هم زدن عملکرد عادی فضا ساخته، به همین دلیل این مصالح مورد توجه معماران به ویژه در ترمیم سازه ها و بهسازی و تقویت سازه های بتنی و  بناهای قدیمی قرار گرفته است. روش تسلیح خارجی با مصالح FRP و روش‌های خانواده‌ آن، رایج‌ترین روش‌ها در تقویت سازه های بتنی می‌باشند. با این حال این روش‌ها با چالش‌هایی جدی نظیر جداشدگی زودرس عامل تقویت کننده و آسیب‌پذیری سازه بتنی در مقابل شرایط نامساعد محیطی نظیر تغییرات شدید دمایی، ضربه، آتش‌سوزی و خرابکاری مواجه می‌باشند.

تقویت سازه ‌های بتنی با مواد FRP

در دهه 80 میلادی سیستم های پلیمر مسلح شده با الیاف Fibre Reinforced Polymers به نام اختصاری FRP در دنیا lعرفی شدند که به دلیل داشتن دو جزء اصلی شامل الیاف و ماده چسباننده آن ها به یکدیگر به عنوان نوعی ماده مرکب یا کامپوزیت به شمار می رود. در کامپوزیت ها مشخصات شیمیایی و فیزیکی هر کدام از اجزای متشکله به تنهایی محفوظ است، اما در کنار یکدیگر تشکیل ماده ای جدید با خصوصیات فیزیکی و رفتار مکانیکی تازه ای را می دهند که کاربردهای ویژه دارند.

در کامپوزیت های FRP مشخصات فیزکی جدید، سبکی وزن، نازک بودن، مقاومت در برابر خوردگی، مقاومت کششی بالا و چندین برابر فولاد و ضریب ارتجاعی مناسب که تقریبا در حدود فولاد است، کاربردهای آن ها را در مقاوم سازی و بازسازی سازهای بتنی، فولادی و بنایی بسیار فراگیر و گسترده کرده است.

مزایای کامپوزیت های پلیمری FRP :

  • وزن کم
  • انعطاف پذیری بالا
  • سهولت در حمل و نصب
  • عدم نیاز به سیستم های محافظ در برابر خوردگی
  • برشکاری در قطعات دلخواه
  • نسبت بالای مقاومت به وزن
  • مقاومت و سختی بالا
  • امکان تقویت به دو صورت داخلی و خارجی

 معایب کامپوزیت پلیمری FRP :

  • آسیب پذیری در مقابل اتش سوزی
  • کم تجربگی مشاوران و پیمانکاران
  • عدم امکان استفاده از ورق های FRP در سطوح ناصاف
  • افزایش وقوع شکست ترد با مصرف این گونه کامپوزیت ها

 

کامپوزیت ها می توانند به صورت ورقه هایی با جنس های مختلف باشند که به دسته های CFRP، GFRP و AFRP تقسیم بندی می شوند که اولی از جنس کربن، دومی از جنس شیشه و سومی نیز از جنس آرامید می باشد.

الیاف FRP را می‌توان جایگزین ورق های فولادی کرد. مصالح FRP  برخلاف فولاد، زوال الکتروشیمیایی نداشته و در مقابل خوردگی ناشی از اسیدها، بازها و نمک‌ها در دماهای مختلف مقاومت بالایی دارند. این مزیت سبب کاهش هزینه در نصب پوشش های حفاظت از خوردگی ‌باشد. همچنین آماده سازی سطوح بتن قبل از نصب مصالح و ورقه های FRP، سهل‌تر از ورق‌های فولادی است.

از الیاف FRP به منظور افزایش ماکزیمم بازدهی و کارایی می‌توان در شکل های مشخص و در نسبت ها و جهات مختلف درون رزین استفاده کرد. سیستم‌های FRP بسیار سبکتر از صفحات فولادی بوده و در عوض مقاومت و سختی بالایی در جهت الیاف دارند. وزن سبک FRP سبب می شود حمل و نقل آنها راحت تر بوده و به داربست کمتری جهت اجرای آن نیاز باشد. سیستم‌های FRP در محل‌هایی که دسترسی محدودی دارند، بسیار گزینه کاربردی می‌باشند و پس از نصب، بار اضافی به سازه بتنی تقویت شده تحمیل نمی‌کنند.

 

 

AFRP CFRP GFRP STEEL
کامپوزیت آرامید کامپوزیت کربن کامپوزیت شیشه فولاد
1/5 – 1/2 1/6 – 1/5 2/1 – 1/2 7/9

جدول1- چگالی مواد FRP رایج بر حسب گرم بر سانتی متر مکعب

ضریب انبساط حرارتی

ضریب انبساط حرارتی مواد FRP تک جهتی در جهت طولی و عمود بر آن متفاوت است و به نوع الیاف، رزین و مقدار الیاف به کار رفته بستگی دارد. جدول زیر ضریب های طولی و عرضی انبساط حرارتی برای مواد FRP تک جهتی رایج را نشان می دهد.

ضریب انبساط حرارتی (سانتی گراد) جهت
AFRP CFRP GFRP
2- تا 6- 0 تا 1- 10 تا 6 طولی
80 تا 60 50 تا 22 23 تا 19 عرضی

جدول2- ضریب انبساط حرارتی مواد FRP

مشخصات مکانیکی مواد مرکب FRP

تاکنون از هر سه نوع FRP یعنی GFRP، CFRP و AFRP برای مقاصد عملی مقاوم سازی استفاده شده است. جدول زیر مشخصات بدست آمده از مصالح FRP با الیاف یک جهتی یا خطی را نشان می دهد. باید یادآور شد که این ارقام و محدوده ها برای مصالح معمولی و متداول FRP تهیه شده است و ممکن است محصولی خاص در شرایطی خاص، مشخصات دیگری را از خود بروز دهد. همچنین وقتی الیاف دو یا سه جهتی باشند، مشخصات FRP با آنچه ذکر شده، متفاوت خواهد بود.

 

 

جنس مدول الاستیسیته (GPa) مقاومت کششی (MPa) حد نهایی کرنش کششی (%)
با مقاومت زیاد 235 – 215 4800 – 2500 2 – 4/1
با مقاومت بسیار زیاد 235 – 215 6000 – 4500 3/2 – 5/1
با مدول زیاد 500 – 350 3100 – 2500 9/0 – 5/0
با مدول بسیار زیاد 700 – 500 2400 – 2100 4/0 – 2/0
E 70 3000 – 1900 5
S 90 – 85 4800 – 3500 5/5 – 4/5
با مدول متوسط 80 – 70 4100 – 3500 5 – 3/4
با مدول زیاد 130 – 115 4000 – 2500 5/3 – 5/2

جدول3- مشخصات مصالح FRP با الیاف خطی

 

دو روش متداول برای استفاده از FRP در مقاوم سازی سازه های بتن مسلح وجود دارد. روش اول چسباندن تر است. در این روش در محل اجرا از رزین برای آغشته سازی الیاف به هم بافته نشده یا الیاف در یک جهت نگه داشته شده استفاده می شود.

روش دوم استفاده از مصالح FRP پیش ساخته است. مصالح پیش ساخته FRP را می توان به اشکال متفاوتی تولید کرد که هم مناسب برای مقاوم سازی تیرها در برابر خمش باشند و هم به شکل صفحاتی باشند که بتوان از آن ها برای دور پیچ کردن ستون ها استفاده کرد. مصالح FRP به طور معمول به صورت بسته بندی شده و همراه با دستورالعمل استفاده عرضه می شود. از جمله خصوصیات فیزیکی این گونه مصالح می توان به موارد زیر اشاره کرد که به صورت ازمایشگاهی نیز اثبات شده اند.

الیاف FRP را می‌توان دور ستون های بتنی به منظور افزایش ظرفیت و شکل ‌پذیری پیچاند؛ این امر سبب تغییر در سختی نمی‌شود. در استفاده از مصالح FRP باید دقت شود که درجه مقاوم‌ سازی یا نسبت مقاومت المان مقاوم سازی شده بتنی به مقاومت عضو مقاوم سازی نشده محدود گردد تا تعادل سازه بتنی در حوادثی شبیه حریق و آتش ‌سوزی و نیز دست کاری و خرابک اری عضو مقاوم سازی شده، حفظ گردد.

مدفون ساختن عامل تقویت کننده در پوشش عضو بتنی در تکنیک نصب در نزدیک سطح (NSM)، در زمینه‌ برطرف کردن این مشکلات توفیق بیش‌تری دارد. هم چنین در روش NSM می‌توان از نوارها، آرماتورهای FRP و نیز میله های دست ساز MM FRP به عنوان عامل تقویت سازه های بتنی استفاده نمود. میله هایMM FRP از پیچاندن ورقه های FRP حول یک هسته‌ تولید می‌شوند. مزیت کلیدی این نوع میله‌ها امکان تعبیه‌ سیستم مهاری بر روی آن‌ها می‌باشد که عملکرد پیوستگی آن‌ها را بهبود می‌بخشد و در رفتارکلی تقویت سازه های بتنی تاثیر می‌گذارد.

روش های طراحی

برای طراحی سازه های بتن آرمه، سه روش کاربرد بیشتری دارند که عبارتنداز :

  • روش تنش مجاز
  • روش مقاومت نهایی
  • روش طراحی بر مبنای حالات حدی

روش تنش مجاز :

این روش که پیش از این، روش تنش بهره برداری یا روش تنش باز نامیده می شد و اکنون با نام روش دیگر طراحی آیین نامه شناخته می شود، اولین روشی است که به صورت مدون برای طراحی سازه های بتن آرمه به کار گرفته شد. در این روش، یک عضو سازه ای به نحوی طراحی می شود که تنش های ناشی از بارهای بهره برداری (سرویس)، که به کمک نظریه های خطی مکانیک جامدات محاسبه می شوند، از مقادیر مجاز تنش های تجاوز نکنند.

روش مقاومت نهایی :

روش مقاومت نهایی، که در آیین نامه ACI به روش طراحی بر مبنای مقاومت موسوم است، حاصل پژوهش گسترده روی رفتار غیرخطی بتن و تحلیل عمیق مسئله ایمنی در سازه های بتن آرمه است.

روند طراحی را در این روش می توان به صورت زیر خلاصه کرد :

بار بهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می شود. بار حاصل را در اصطلاح، بار ضریب دار یا بار نهایی می نامند.

 روش طراحی بر مبنای حالات حدی :

به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور کردن ایمنی، روش طراحی بر مبنای حالات حدی ابداع شد.

آنچه به طور خلاصه در مورد روش طراحی بر مبنای حالت های حدی می توان گفت این است که این روش از نظر اصول محاسبات، مشابه روش مقاومت نهایی است، تفاوت عمده آن با این روش در نحوه منطقی تر ارزیابی ظرفیت باربری و احتمال ایمنی اعضاست. اعضا و سازه های بتن آرمه باید با توجه به سه حالت حدی زیر آنالیز و طراحی شوند :

  • حالت حدی نهایی که مربوط به ظرفیت باربری می شود (مانند مقاومت و پایداری)
  • حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)
  • حالت حدی ترک خوردگی یا باز شدن ترک ها
  • به حالت تغییر شکل و ترک خوردگی یا باز شدن ترک ها، به طور معمول حالت های حدی بهره برداری گفته می شود.

 

محدودیت های مقاوم سازی با مصالح FRP در حالت مقاومت نهایی :

توصیه های طراحی در آیین نامه ACI بر اساس اصول حالت مقاومت نهایی پایه گذاری شده است. این روش بر اساس درجه ایمنی است و بر خلاف دو حالت دیگر طراحی (حالت حدی سرویس که بر اساس تغییر شکل زیاد و ترک خوردگی است و حالت نهایی که بر اساس شکست، گسیختگی تنش و خستگی است) می باشد.

گسیختگی :

ملاحظات دقیق و معقولی باید برای تعیین محدودیت های مقاوم سازی اختصاص داده شود. این محدودیت ها به دلیل تضمین عدم فروریختن سازه و وقوع دیگر گسیختگی های سیستم FRP، ناشی از آتش سوزی، خرابکاری یا دلایل دیگر است. به این منظور توصیه می شود که باید اعضای سازه ای مقاوم سازی نشده، بدون نصب تقویت کننده های FRP، ظرفیت تحمل کافی برای مقاومت در برابر مقدار مشخص از بار را داشته باشند.

بر اساس این ایده، در حوادثی که خرابی در سیستم FRP منجر می شود، سازه هنوز قادر به مقاومت مناسبی در برابر بارها بدون این که دچار تخریب شود، خواهد بود.

توصیه لازم برای کافی بودن مقاومت موجود سازه برای تحمل بار در رابطه زیر آورده شده است:

در این رابطه φ ضریب کاهش ظرفیت و Rn مقاومت مقطع است.

نوع مقاومت ضریب کاهش ظرفیت
خمش 9/0
کشش محوری 9/0
فشار محوری 9/0 – 7/0
برش و پیچش 85/0
ضریب کاهش مقاومت اسمی

تحمل سازه در برابر آتش :

میزان مقاوم سازی سازه به وسیله سیستم های FRP چسبیده به صورت خارجی، اغلب توسط آیین نامه های مربوط به آتش سوزی محدود می شود. رزین های پلیمری، یکپارچگی و استحکام سازه ای خود را در درجه حرارت های محدوده 60 تا 80 درجه سلسیوس از دست خواهند دادو اگرچه سیستم FRP خود به تنهایی مقاومت کمی در برابر اتش سوزی دارد، اما با ترکیب با عضو بتنی موجود، سبب مقاومت کافی عضو بتنی در برابر حریق می گردد.

ظرفیت کلی سازه :

سیستم های FRP برای مقاوم سازی اعضا به صورت خمشی و برشی و … موثرند، با این حال ممکن است در سایر حالت های گسیختگی مانند برش سوراخ کننده و ظرفیت باربری پی ها تاثیری نداشته باشند. بنابراین مهم است که مطمئن شویم همه اعضای سازه می توانند افزایش بارهای وارد بر اعضای تقویت شده را تحمل کنند. به علاوه، باید انالیزی بر روی اعضای مقاوم سازی شده با سیستم FRP برای بررسی بیشتر بودن احتمال وقوع گسیختگی خمشی به گسیختگی برشی صورت گیرد.

مقاومت کششی نهایی طراحی باید با تعیین ضریب کاهش وابسته به شرایط، از جدول زیر به دست آید. این جدول بر اساس نوع الیاف و شرایط محیطی تنظیم شده است.

ضریب کاهش محیطی، نوع الیفا – رزین شرایط محیط
95/0 کربن – اپوکسی شرایط داخلی
75/0 شیشه – اپوکسی
85/0 آرامید – اپوکسی
85/0 کربن – اپوکسی شرایط خارجی (پل ها، اسکله ها و پارکینگ های غیربسته)
65/0 شیشه – اپوکسی
75/0 آرامید – اپوکسی
8/0 کربن – اپوکسی محیط های ناهنجار (کارگاه های شیمیایی و کارخانه های تصفیه فاضلاب)
5/0 شیشه – اپوکسی
7/0 آرامید – اپوکسی
ضرایب کاهش محیطی

 

محدودیت های مقاوم سازی با مصالح FRP در حالت حدی :

فلسفه طراحی در آیین نامه BS :

توصیه های طراحی در آیین نامه BS بر اساس اصول حالت حدی پایه گذاری شده است. منظور از طراحی حالت حدی، دستیابی به عملکرد قابل قبول از سازه مقاوم سازی شده در طول عمر کاربری است، به عبارتی سازه باید به گونه ای کنترل شود که در طول عمر خود به حالت حدی نرسد تا موجب عملکرد نامناسب نشود.

طراحی سیستم های مقاوم سازی FRP، بر حالت حد نهایی مقاومت متمرکز می شود. این حالت شامل کنترل خمش، برش و فشار، شکل پذیری و همچنین کنترل جدا شدن صفحه FRP است. از آنجایی که مقاوم سازی خمش، سختی عضو و به دنبال آن احتمال خطر گسیختگی تر را افزایش می دهد، باید شکل پذیری اعضای خمشی کنترل شود.

رابطه های ارائه شده برای طراحی سیستم های مقاوم سازی FRP بر اساس فرض رابطه سهموی برای بتن فشاری و رابطه دو خطی الاستیک و پلاستیک برای آرماتور فولادی است. بر خلاف آرماتورهای فولادی، همه FRP دارای یک رفتار الاستیک خطی تا لحظه شکست بدون هیچ ناحیه پلاستیکی می باشد.

بررسی خمش در تیرهای بتن آرمه :

وقتی یک تیر بتن آرمه تحت خمش قرار می گیرد، نمودار لنگر – انحناء آن مطابق شکل زیر می باشد.

 

حال اگر منحنی بار – تغییر مکان را برای تیر تقویت شده با FRP با تیر تقویت نشده مقایسه کنیم، به نتایج مهمی خواهیم رسید.

بررسی معایب مقاوم سازی خمشی تیرها با کامپوزیت FRP :

به دلیل برخی خواص رفتاری مواد کامپوزیتیFRP، مودهای گسیختگی یک عضو بتن آرمه تقویت شده در خمش به وسیله FRP به حالت های زیر تقسیم می شود :

  • شکست در اثر گسیختگی FRP در اثر کشش ناشی از خمش
  • شکست در اثر خرد شدن بتن فشاری تیر در اثر فشار ناشی از خمش در وجه بالایی تیر
  • شکست برشی
  • جدا شدن پوشش بتن
  • جدا شدن انتهای لایه مقاوم کننده چسبانده شده از بتن
  • از بین رفتن چسبندگی در سطح تماس FRP

مود های گسیختگی تیر بتنی تقویت شده با ورق FRP

بررسی خمش در دال های بتن آرمه :

دال ها متداول ترین نوع پوشش کف را در سازه های بتن آرمه تشکیل می دهند. دال ها با توجه به رفتار خمشی به دو دسته دال های یکطرفه و دوطرفه تقسیم می گردند و از نظر ساخت به دال های تیر و دال و تخت و قارچی و مجوف و انواع دیگر اجرا می گردند. در حالی که تحقیقات موجود در زمینه مقاوم سازی خمشی تیرها در بسیاری موارد در مورد دال ها هم قابل استفاده است، اما این دو بحث تفاوت هایی با هم دارند. در هر صورت، اساس مقاوم سازی خمشی در دال ها بر استفاده از مصالح مرکب FRP و چسباندن نوارها یا صفحات FRP بر روی سطوح تحت کشش استوار است.

 

تقویت دال در جهت اصلی

بررسی برش در تیرهای بتن آرمه :

برای درک بهتر نحوه انتقال بار در مقاطع تحت برش، پدیده ترک خوردگی، نوع گسیختگی و نقش آرماتورهای برشی و چگونگی مقاوم سازی برشی تیرها، بررسی رفتار تیرهای بتنی تحت برش در مراحل مختلف بارگذاری ضروری است.

رفتار برشی تیرها

شکست های برشی و خمشی، دو حالت عمده شکست در تیرهای معمولی بتن مسلح هستند.

افزایش مقاومت برشی تیرها به روش چسباندن صفحات FRP، احتمال گسیختگی خمشی را نسبت به گسیختگی برشی بیشتر کرده و در نتیجه عضو سازه ایف شکل پذیرتر می شود.

طرح های مختلفی برای استفاده از مصالح FRP در مقاوم سازی برشی پیشنهاد شده است. این طرح ها شامل چسباندن FRP به سطوح جانبی تیر، استفاده از پوشش U شکل برای سطوح جانبی و سطح زیرین تیر و نیز دورپیچ کردن مقطع با استفاده ار الیاف و نوارهای FRP است.

بررسی رفتار ستون های بتن آرمه :

به طور کلی هر عضوی که تحت بار محوری فشاری یا کششی قرار داشته باشد، یک عضو محوری نامیده می شود. این نامگذاری شامل اعضایی که به طور هم زمان تحت خمش قرار دارد نیز می شود. متدال ترین روشمقاوم سازی ستون ها با FRP، دورپیچ کردن سطح خارجی ان ها با نوارهای FRP است. اساس این مقاوم سازی که در واقع محصور کردن ستون و ایجاد فشار جانبی بر بتن آن است، بر این اصل استوار است که وجود فشار محیطی بر روی یک المان بتنی، سبب افزایش مقاومت فشاری و شکل پذیری آن می شود. روش های مقاوم سازی را می توان به سه گروه عمده تقسیم بندی کرد :

  1. دورپیچ کردن مقطع ستون
  2. پیچیدن مارپیچی
  3. پوشاندن با پوسته های پیش ساخته

 

حالت های مختلف مقاوم سازی ستون

 

 

بهسازی با استفاده ازمهاربندهای فولادی

اضافه نمودن مهاربندی های فولادی به سازه بتنی، افزایش سختی، کاهش نیاز شکل پذیری و افزایش مقاومت برشی سیستم را به همراه خواهد داشت ضمن آنکه افزایش ناچیزی را در وزن سازه موجب می شود. عموما استفاده از سیستم های مهاربندی واگرا (EBF) در ساختمان های بتنی به دلیل پر هزینه بودن و مشکلات موجود در اجرا و تامین جزییات تیر پیوند مرسوم نمی باشد. اما انواع سیستم های مهاربندی همگرا می تواند در این نوع بهسازی مورد توجه قرار می گیرد.

بهسازی با استفاده ازمیان قاب های صفحه ای بتنی یا بنایی

افزایش مقاومت و سختی سیستم و همچنین کاهش نیاز شکل پذیری اعضا و اجزای سازه را می توان با اضافه نمودن میان قاب های صفحه ای بتن مسلح و یا دیوارهای آجری ایجاد نمود که یکی از رایج ترین روش ها در سازه های بتنی است. دیوارهای اضافه شده می توانند به صورت دیوار های برشی جدید که در محل اجرا شده و یا دیوارهای بنایی شاتکریت شده باشند.

در بهسازی سازه ها با استفاده از این روش باید به این موضوع توجه نمود که آیا قاب بتنی موجود می تواند به عنوان قسمتی از سیستم مرکب باشد یا خیر. به عبارت دیگر باید کفایت باربری ستون های موجود سازه در صورتی که به عنوان اعضا و اجزای مرزی دیوارهای برشی عمل نمایند مورد کنترل قرار می گیرد.در صورت عدم کفایت مقاومتی ستون های سازه می توان دیوار برشی را به صورت کامل به همراه اعضا و اجزا مرزی و به صورت مجزا از قاب بتنی موجود احداث نمود و یا با تقویت ستون های سازه دیوار بتنی را به این اعضا متصل نمود. مزیت حالت دوم استفاده از بار محوری فشاری ستون های موجود در کاهش بار برکنش اعمالی ناشی از زلزله می باشد.

افزودن میانقاب بتنی به سازه بتنی

اضافه کردن قاب های خمشی

قاب هاي خمشي در صورت ارضاي ضوابط تعيين شده ، داراي شكل پذيري و اتلاف انرژي بسيار بالايي مي باشند . به علت سختي كم پاسخ اين سيستم به نيروهاي جانبي باتغيير شكل هاي فزاينده همراه است كه براي اجزاي غير سازه اي مشكلاتي را بوجود مي آورد و همچنين با افزايش تغييرشكل هاي ثانويه حتي به ناپايداري كلي سازه منجر مي شود.

اين سيستم ها با توجه به سختي كمتر و نرم بودن ، پس از خرابي سيستمهاي سخت، مي توانند نيرو جذب كنند و در صورت پاسخگو نبودن سيستم مقاوم اصلي، از خرابي سازه جلوگيري نمايند.

لازم به ذكر است قابهاي اضافه شده مي توانند بصورت خارجي نيز باشند

بهسازي با اضافه كردن قاب خمشي در خارج از ساختمان

 

 

 

 

منبع : شرکت مقاوم سازی افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه بتنی , ,
تاریخ : سه شنبه 16 مرداد 1397
بازدید : 422
نویسنده : افزیر

 

  

ساختمان های فولادی در صورت طراحی مناسب و اجرای دقیق دارای مقاومت

و شکل پذیری بسیار مناسب می باشد ولی با توجه به عدم استفاده از نیرو های

اجرایی متخصص و فرض های اشتباه ساخت ساختمان های فولادی دارای معایب

و ایراداتی می باشد که نیاز به مقاوم سازی و بهسازی دارد. ساختمان های فولادی اغلب تحت بار های

لرزه ای به دلیل کمانش موضعی آسیب دیده و عملکرد مناسبی ندارند. و یا به دلیل خوردگی نیاز به مقاوم سازی دارند.

در این مقاله سعی شده است که به مقاوم سازی ساختمان های فولادی را در برابر بار های لرزه ای و ثقلی پرداخت شود.

 

 

 

 

معایب قاب های خمشی فولادی

معایب عمده لرزه ای قاب های خمشی فولادی، به شرح زیراست:

  • کمبود مقاومت برشی و خمشی  تیرها، ستون ها و اتصالات آنها
  • کمبود مقاومت در چشمه اتصال
  • تغییر مکان نسبی زیاد در طبقات

معایب عمده قاب های مهاربندی شده همحور، به شر زیر است:

  • کمبود مقاومت جانبی سیستم مهاربندی در اثر کمانش عضو فشاری
  • کمبود مقاومت اتصال مهاربند
  • کملود مقاومت محوری در تیرها و ستون های سیستم مهار بندی
  • هندسه مهاربندی که با کمانش عضو فشاری به اعمال نیروی کششی اضافی و ایجاد خمش در تیر یا ستئن منجر می شود.

در زلزله های اخیر ضعف های ساختمان های فولادی در برابر بارهای جانبی مشخص شده است که به صورت

زیر است:

کمانش خارج از صفحه مهاربند

طراحی ضعیف اتصالات مهاربندها

طراحی ضعیف تیر پیوند

عملکرد ضعیف ستون های بست دار

ایجاد طبقه نرم

اتصالات ضعیف شمشیری پله

جوشکاری های نامناسب در ساخت اسکلت

عدم رعایت تیر ضعیف- ستون قوی

با توجه به موارد بالا مشخص است که ساختمان های فولادی ضعیف در هنگام زلزله، دچار آسیب و حتی فرو ریزش می شوند. عکس های فوق نشان می دهد که برای جلوگیری ازفروریزش و آسیب ساختمان هاب فولادی نیاز به مقاوم سازی و بهسازی دارند.

روش های مقاوم سازی ساختمان های فولادی

مقاوم‌سازی تیر فولادی تحت کمانش پیچشی- جانبی با کامپوزیت‌های FRP

در سازه‌های فولادی تیرها به عنوان اعضای خمشی شناخته می‌شود. از آنجایی که در مسائل خمش قسمتی از مقطع تحت‌فشار قرار می‌گیرد، خطر کمانش در این ناحیه وجود دارد. دو حالت کمانش برای ناحیه مذکور متصور است. در حالت اول بال یا جان مقطع جداگانه و به صورت موضعی کمانش می‌کند و در حالت دوم ممکن است کمانش کلی برای ناحیه فشاری مقطع رخ دهد. دو عامل تعیین کننده مشخصات هندسی مقطع و فواصل تکیه‌گاهی یا مهارهای جانبی در جلوگیری از دو حالت کمانش اشاره شده نقش عمده‌ای ایفا می‌کنند.

در طراحی اعضای خمشی چنانچه مشخصات ابعادی نیمرخ به گونه‌ای باشد که نسبت عرض به ضخامت اجزای آن از موارد مطرح شده در آیین‌نامه‌های طراحی کمتر باشد و شرایط فشردگی را برآورده ننماید، بال یا جان مقطع دچار ناپایداری موضعی شده، کمانش می‌کند و عضو قابلیت باربری خود را از دست می‌دهد. همچنین در صورتی که طول تیر در فاصله بین دو تکیه‌گاه جانبی از حد معینی تجاوز کند یا به عبارتی دیگر فاقد تکیه‌گاه جانبی در فواصل مناسب باشد، قبل از این‌که تنش‌های خمشی حداکثر در تیر به حد تسلیم برسند بال فشاری تیر ناپایدار شده و تخریب می‌گردد. چنین تخریبی که به صورت ناگهانی در اثر افزایش تنش فشاری در بال به واسطه خمش تیر از یک طرف و خمش جانبی تیر به واسطه نگهداری نشدن آن به طور جانبی و نیز چرخش تیر به صورت ترکیبی از پیچش خالص و اعوجاج بوجود می‌آید به پدیده کمانش پیچشی- جانبی تیر موسوم است. شکل تصویری از کمانش پیچشی- جانبی یک نمونه تیر I  شکل را نشان می‌دهد.

کمانش پیچشی- جانبی یک نمونه  تیر I  شکل

در مرحله طراحی عضو خمشی موارد اشاره شده و کلیه ضوابط آیین‌نامه‌ای توسط مهندسین محاسب مد نظر قرار می‌گیرد و مقطع نهایی از هر نظر ایمن طرح می‌گردد تا امکان وقوع کمانش پیچشی- جانبی تیر به حداقل برسد. با این وجود مواردی ممکن است در طول مدت بهره‌برداری سازه به وجود آید و کفایت مقطع را به مخاطره اندازد. از جمله این موارد می‌توان به ضعف و اشکال در اجرای عضو، تغییر در کاربری سازه، خسارت‌دیدگی سازه در اثر بلایای طبیعی و اعمال بارهایی فراتر از بارگذاری‌های پیش‌بینی‌شده اشاره نمود. در چنین مواردی یکی از گزینه‌هایی که به عنوان راهکار پیش روی طراحان قرار دارد بحث مقاوم‌سازی و تقویت عضو موجود می‌باشد.

از جمله روش‌های متداول تقویت تیر فولادی که در دهه‌های گذشته بیشتر مورد استفاده قرار می‌گرفته است می‌توان به اتصال ورق‌های فولادی اضافی با پیچ یا جوش به مقطع مورد نظر اشاره نمود. روش تقویت اشاره شده با توجه به سنگینی صفحات و انعطاف‌پذیر نبودن آن‌ها مشکلاتی را به همراه دارد. همچنین اتصال ورق‌های اضافی با جوش نیز منجر به افزودن تنش پسماند به عضو می‌شود که البته مطلوب به نظر نمی‌رسد.

معایب کاربرد روش تقویت فوق مهندسین را بر آن داشته است تا به دنبال یافتن راهکارهایی جدید برآیند به گونه‌ای که علاوه بر جبران ضعف عضو فولادی، از سایر جنبه‌های دیگر نظیر وزن، مقاومت، راحتی کاربرد و طول عمر برتری قابل قبولی نسب به روش تقویت اشاره شده داشته باشند. در این راستا، پیشرفت علم و فناوری و نیز دستیابی به تکنولوژی ساخت مصالح نوین مهندسین را در تحقق این امر یاری رسانده است. روش مقاوم‌سازی با کامپوزیت‌های پلیمری تقویت‌شده با الیاف FRP یکی از این نوع روش‌های تقویت و مقاوم‌سازی می‌باشد که به عنوان روشی نوین و البته کارآمد در سال‌های اخیر مطرح شده است.

مشخصات فیزیکی و مکانیکی فوق‌العاده کامپوزیت‌های FRP در کنار مزیت‌های گوناگون دلیل اصلی استفاده از آن‌ها در صنعت ساختمان به منظور تقویت و ترمیم سازه‌ها گردیده است. از مهم‌ترین مشخصه‌های کامپوزیت‌های FRP می‌توان به دارا بودن رفتار الاستیک خطی قبل از شکست ترد، نسبت مقاومت به وزن بالا، مقاومت در برابر اثرات محیطی،اجرای ساده، دسترسی نامحدود در اندازه، شکل و ابعاد و نیز عایق بودن اشاره نمود.

در روش استفاده از کامپوزیت‌های FRP برای تقویت تیرهای فولادی، کامپوزیت‌های FRP بر روی اجزای سطح مقطع تیر فولادی قرار می‌گیرد و منجر به مهاربندی آن‌ها در برابر کمانش موضعی می‌گردد. با توجه به نوع سطح مقطع عضو، شرایط تکیه‌گاهی و نیز مشخصات ابعادی بال و جان مقطع، چیدمان مختلفی برای جانمایی در مقطع تیر می‌توان برگزید. چند نمونه از نحوه چیدمان کامپوزیت‌های FRP برای تقویت تیر I  شکل در شکل پایین آورده شده است. البته ضخامت و ابعاد کامپوزیت FRP مورد استفاده برای تقویت تیر با توجه به عوامل مختلف نظیر شرایط محاسباتی و نیز ملاحظات اقتصادی می‌تواند به گونه‌ای انتخاب شود که قسمتی از مقطع را بپوشاند یا اینکه برای تقویت تمامی سطح مقطع مورد استفاده قرار گیرد.

از نحوه چیدمان کامپوزیت‌های FRP مورد استفاده برای تقویت تیر I

از نتایج تقویت تیرهای فولادی به‌وسیله کامپوزیت‌های FRP می‌توان به بهبود ظرفیت کمانش پیچشی- جانبی و افزایش بار بحرانی کمانش عضو اشاره نمود. بدین ترتیب با به تعویق انداختن کمانش پیچشی- جانبی و کاهش تغییر مکان‌های جانبی، می‌توان ظرفیت باربری تیر را افزایش داد.

ژاکت بتنی

در ساختمان های فولادی که نیاز به مقاوم سازی المان و افزایش شکل پذیری می باشد می توان از ژاکت بتنی استفاده نمود. استفاده از ژاکت بتنی در ستون ها سبب افزایش سختی و افزایش مقاومت ستون فلزی و همینطور مقاومت بیشتر المان در برابر کمانش می شود. استفاده از ژاکت بتنی در تیرها سبب افزایش ظرفیت خمشی و برشی تیر ها می شود. لازم به ذکر است که اگر در تیر ها از ژاکت بتنی استفاده شود می بایست به رعایت ضابطه تیر ضعیف- ستون قوی دقت شود.

تقویت اتصالات و المان ها با استفاده از ورق های مناسب

همان گونه كه در قسمت قبلي بدان اشاره شد بدليل عدم شناخت كافي از رفتار اتصالات، بسياري از آسيب هاي ايجاد شده در سازه ها از ضعف در طراحي يا اجراي اتصالات ناشي مي شود. بنابراين بررسي آسيب هاي وارد شده بر اتصالا ت در اثر زلزله هاي گذشته امري ضروري مي نمايد.
آسيب هاي اتصالات در اثر زلزله هاي گذشته را مي توان به آسيب هاي تير، ستون، جوش، اجزا و چشمه اتصال طبقه بندي نمود.
آسيب هاي وارده به اتصال ممكن است يكي از انواع فوق و يا چند نوع مختلف باشد. مشاهده وسيع اينگونه آسيب ها در اتصالات بر اثر زلزله هاي گذشته بسيار هشداردهنده ميباشد.

در طراحی اتصالات باید این نکته رعایت شود که اتصال باید قادر باشد بیشینه نیرو قابل تحمل المان را تحمل کند. در صورت عدم رعایت این موضوع، نیاز است اتصالات تقویت و مقاوم سازی شوند. در سازه های فولادی مخصوصا در قاب های خمشی اتصالات بخش بسیار مهمی از سازه می باشد.

ایجاد سختی در طبقات دارای پتانسیل طبقه نرم

چنانچه مشخص شود كه ضعف عمده سازه در كمبود سختي جانبي آن و در نتيجه تغيير مكا ن هاي زياد مي باشد، می توان با راهكارهايي مناسب مانند افزايش مهاربند يا ديوار برشي، سختي جانبي لازم را براي سازه فراهم نمود.

در چنين شرايطي اندركنش سازه موجود و سيستم باربر جانبي جديد بايد به دقت مورد بررسي قرار گيرد . چنانچه قاب مهاربندي شده و يا ديوار برشي داراي سختي زيادي باشد، ممكن است بخش قابل توجهي از بارهاي جانبي را به خود جذب كند . اگر افزايش ظرفيت با اضافه كردن قاب خمشي انجام گيرد به دليل نرمي قاب، اندركنش سازه موجود و قاب خمشي موجب توزيع بار بين هر دو سيستم مي شود. در اين حالت بايد رفتار اعضاي ترد سازه در اثر تغييرشكل هاي ساختمانِ بهسازي شده به دقت مورد بررسي قرار گيرد.

اضافه نمودن ستون

اضافه کردن ستون به طبقه نرم در دو جهت باعث بهسازی ساختمان می شود 1- به دلیل افزایش سختی 2- کاهش سطح بارگیر تیر که سبب افزایش ظرفیت باربری تیر می شود.

اضافه نمودن دیوار برشی

استفاده از ديوار برشي در سالهاي اخير، در ساختمانهاي نوساز و همچنين بهسازي ساختمانهاي موجود، مورد توجه قرار گرفته است. اين سيستم داراي سختي مناسب براي كنترل تغييرشكل سازه بوده و همچنين با ارضاي ضوابط طراحي، اين ديوارها داراي مكانيسم شكست شكل پذیر با اتلاف انرژي بالا  می باشد.
با توجه به مقاومت بالاي اين ديوارها، استفاده از آنها در ساختمان هاي بلند مرتبه بسیار اقتصادي بوده ولي در مورد ساختمان هاي با ارتفاع كم و متوسط، مسائل جانبي از قبيل تقويت اجزاي سازه اي مجاور به آن، تاثير زيادي بر جنبه هاي اجرايي و اقتصادي آن مي گذارند. نمونه اي از جزئيات اجرايي ديوار برشي جديد در شكل های 3 و 4 نشان داده شده است.

تقويت موضعي فونداسيون در دهان هاي كه ديوار برشي اضافه گرديده است

 

جزئيات اجرايي ديوار برشي جديد جهت بهسازي

اضافه نمودن مهاربند

اضافه کردن مهاربند به قاب های فولادی روش کارآمدی می باشد که در صورتی که ساختمان دارای سختی کم و یا جوشکاری و یا دتایل اتصالات نامناسب باشد می تواند به مقاوم سازی ساختمان فولادی کمک کند. لازم به ذکر است در صورتی که از مهاربند جهت مفاوم سازی ساختمان استفاده شود نیاز است ستون ها را جهت اطمینان از مقاومت در برابر کمانش موضعی کنترل نمود.

از مهاربندهای واگرا کمتر در بهسازی ساختمان های موجود استفاده می شود که دلیل آن عموما ضعف مقاومتی تیری است که صرفا برای بار ثقلی طراحی شده و بهسازی قسمتی از آن به عنوانتیر پیوند عموما پرهزینه و دشوار خواد بود. مهاربندهای فولادی هم محور، افزایش سختی، محدود نمودن چرخش در محل اتصالات تیر به ستون و کاهش تغییر مکان های کلی سازه و نسبی طبقات را باعث می شود. هر چند به دلیل کاهش زمان تناوب سازه، ساختمان باید برای مقادیر بزرگتری از نیروی زلزله کنترل شود.

نکته: در صورت اضافه نمودن مهاربند یا دیوار برشی نیاز است پی ساختمان مورد آنالیز قرار گیرد تا در برابر نیرو های وارده و بلندشدگی کنترل شود.

افزودن میانقاب

از روش هاي افزايش مقاومت و سختي جانبي سازه ها مي توان به اضافه نمودن ميانقاب به سازه اشاره نمود .اضافه کردن دیوار های میانقاب باعث افزایش سختی می شود و سبب می شود که زمان تناوب سازه تا حدود 20% کاهش یابد که این نشان دهنده تاثیر میانقاب در سختی سازه می باشد. در زمان استفاده از میانقاب برای تامین سختی باید اندرکنش المانها سازه ای با میانقاب را بررسی نمود.

با توجه به مصالح مصرفي، ميانقاب ها مي توانند آجري، بتني و … مي باشند. البته اضافه نمودن ميانقاب هاي بنايي به عنوان روشي براي افزايش مقاومت و سختي جانبي سازه ها به هيچ عنوان توصيه نمي شود زيرا تحت بارهاي لرزه اي، ميانقاب هاي بنايي تنها در برابر سيكل هاي اول بارگذاري مقاومت مي نمايند و وزن سازه را نيز به شدت افزايش مي دهند. ديوارهاي بتني در داخل قاب هاي ساختمان مي توانند مسلح و يا غيرمسلح باشند.

استفاده از ديوارهاي پركننده با مصالح بنايي و يا بتن مسلح در بهسازي ساختمان

اجرای دیوار باربر

در برخی مواقع به دلایل مختلف قادر به مقاوم سازی المان سازه ای نمی باشیم. یک راهکار مناسب اجرای دیوار باربر در زیر تیر می باشد که سبب می شود از خیز تیر را کنترل کرده و در باربری ثقلی به ستون های آسیب پذیر کمک کند. این روش در باربری ثقلی مفید می باشد و در برابر بار جانبی زیاد عملکرد مناسبی نداشته است.

اجرای دستک فشار و کششی برای مهار کنسول ها

در مواقعی که طول کنسول ها زیاد می باشد به دلیل بار بیش از حد کنسول و مولفه عمودی زلزله نیاز است که اقدام به مهار کنسول می باشد، جهت مهار کنسول ها نیاز است با توجه به نیروی وارده دستک های در بالا و یا پایین کنسول ها اجرا شود تا از خیز بیش از حد و اعمال نیروی خمشی مضاعف به ستون جلوگیری شود.

اجرای تیر فرعی مابین ستون

در برخی موارد تیر ها قادر به تحمل بار وارده نمی باشند و سبب خیز بیش از اندازه می شود، راه مناسب جهت مقاوم سازی این تیر ها استفاده از تیر های در مابین ستون در وسط دهانه می باشد که سبب می شود وزن دیوار روی تیر ها به نصف کاهش یابد . در این روش از مقاوم سازی می بایست اتصال تیر اضافه شده به صورت مفصل در نظر گرفت تا در برابر نیرو جانبی مقاومت نداشته باشد.

 

منبع : شرکت مقاوم سازی افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , سازه فولادی , ,
تاریخ : دو شنبه 15 مرداد 1397
بازدید : 85
نویسنده : افزیر

 دلایل بازسازی ساختمان ها

دلایل بازسازی و مقاوم سازی ساختمان ها معمولا در موارد زیر خلاصه می شود:

1 - تغییرات در فضای داخلی و چیدمان فضاها شامل تغییرات در آشپزخانه و کابینت و یا کاشی و سرامیک  و تغییر محل اتاق، سرویس و پذیرایی

2- زیبایی ساختمان با به روز کردن المانهای آن

3- خرابی هایی حاصل شده در ساختمان و انجام اقدامات به موقع  به منظور ایجاد قابلیت بهره برداری مناسب( شامل فرسودگی لوله های آب و فاضلاب، موتورخانه ، عایق بندی پشت بام و..)

4- مقاوم سازی ساختمان و اجزای آن در برابر زلزله

 بازسازی ساختمان ها

برای اینکه تغییرات در دیوار و کف و آشپزخانه و به طور کلی تغییرات برای زیبایی ساختمان به درستی انجام شود و بهترین نتیجه کسب شود پیش از هر چیز به یک طرح اولیه زیبا و منطقی بر اساس فضای موجود نیاز است.این کار را به دست مهندسان طراح خبره بسپارید.

درصورتیکه طراحی قوی و متناسب با فضا انجام شود کافی است مصالح با کیفیت و با سلیقه استفاده شود تا ساختمان زیبا شود.تناسب رنگها،استفاده مفید ازفضاها،درنظرگرفتن فضای کافی و به کار بستن تجربه  از شروط مهم اجرای یک طرح بازسازی موفق است.

برای بازسازی منزل هزینه و زمان بسیار اهمیت دارد. برخی هزینه های بازسازی منازل مانند تعمیر لوله ها و وسایل سرمایش و گرمایش ضروری است.اما برخی هزینه ها قابل کاهش است.برای مثال به جای انتخاب سنگ و کاشی درجه یک می توان از مصالح درجه دو نیز استفاده کرد. اما به شرطی که کیفیت لازم و زیبایی نیز داشته باشد و بازسازی و تعمیرات ساختمان شما هرچه زیباتر اجرا شود. با توجه به شرایط بازسازی برنامه زمان بندی مناسب برای اجرای طرح با توجه به محدودیت هایی نظیر همسایه ها، شهرداری و .. الزامی است. همچنین در بازسازی منازل مسکونی قدیمی بایستی با در نظر گرفتن محدودیت های سازه بهینه ترین نحوه بازسازی انتخاب گردد. در این مورد نظر کارشناس در خصوص توجیه بازسازی یا تخریب و نوسازی منازل مسکونی قبل از هرگونه اقدامی الزامی می باشد.

بازسازی ساختمان ها با کاربری های مختلف

در حالت کلی (کاربری های عموماً غیر مسکونی، اداری و تجاری) روش های بازسازی ساختمان با کاربری هایی نظیر تاریخی، فرهنگی ،دفاعی و ..شامل هفت دسته می باشد که عبارتند از:

1-بازسازی سبکی یا آناستیلوزی:

به بازسازی سبک فضای معماری بناهای متعلق به زمانهای بسیار دور گویند که میزان ویرانی آنها به حدی زیاد است که از آنها جز عناصر ساختمانی محدود به جای نمانده است. بناهایی مورد مرمت آناستیلوزی قرار میگیرند که نمایانگر وجود سبک یا شیوه معماری خاصی باشد. در این روش بازسازی به این صورت انجام می پذیرد که تیکه گاه های جایگزین تکیه گاه های فرسوده قبلی می شوند اما به گونه ای که بیشترین شباهت را به نمای ابتدایی ساختمان دارد .

2- بازسازی حفاظتی ساختمان:

هدف اصلی آن نگهداری و حفاظت از بنا است. در بازسازی حفاظتی میزان مداخله در شکل و شرایط موجود تا آن اندازه است که بتواند استمرار شباهت بنای مرمت شده را در وضع موجود آن نسبت به وضع پیشین اش به دست دهد. در این روش ادعایی بر انجام تصمیم  فوق العاده ای چه فنی چه هنری فلسفی وجود ندارد.

3-بازسازی تکمیلی یا الحاقی:

بازسازی بخشهای از دست رفته بنای قدیمی به منظور تکمیل موجودیت کالبدی و کاربردی بنا و به خاطر شرکت دادن آن در زندگی عمومی محیط صورت می گیرد .

4- بازسازی با روش پاک سازی سبکی:

گاهی میزان دخالت و تعداد عناصری یا بخشهایی که به بنای اصلی اضافه شده اند، از طرف مرمت کننده بعدی افراطی و یا بیمورد تشخیص داده شود. در پی چنین برداشتی، آزاد کردن بنا از عناصری که نسبت به شکل اصلی ساختمان ناهمگن و اضافی تشخیص داده شود اقدام میگردد. حکم بر این که آنچه بعدها بر پیکره کالبدی بنا افزوده گشته یا از آن برگرفته شده و به شکل دگر با آن ترکیب شده، و باید از بین برود.

5-باز زنده سازی یا مرمت تاریخی:

به این ترتیب که نقش تاریخی بنا تعیین کننده چگونگی مرمت خواهد بود. درعمل، این نوع بازسازی از راه در هم آمیختن آناستیلوزی، آزاد کردن بنا از بخشهای غیر اصیل ونیز مرمت تکمیلی شکل میگیرد .

6- بازسازی استحکامی:

اقداماتی که برای استحکام بخشیدن و تضمین پایداری مجموعه های ساختمانی صورت میگیرد .

7-مرمت جامع:

در این نوع مرمت اقدامات برای برپایی و حفاظت و باززنده سازی بنا انجام داده میشود و ممکن است تمام سبکها مورد استفاده قرار گیرد. در این نوع مرمت علاوه بر برپایی و نگهداری بنا، عملکرد و احیای آن نیز اهمیت دارد.

خدمات قابل ارائه در این بخش پس از بازدید کارشناس به کارفرما ارائه می گردد.

خدمات قابل ارایه در بخش بازسازی ساختمان ها (آپارتمان ها)

  • برداشتن تیغه, تیغه چینی و جابجایی فضاها,تخریب,دیوارکشی,مقاوم سازی آپارتمان وساختمان, تعویض پنجره قدیمی باپنجره یوپی وی سی تعویض درب ورودی آپارتمان با درب ضد سرقت ،اضافه کردن آسانسور در آپارتمان قدیمی
  • ساخت کمد دیواری, آهنگری ساختمان آپارتمان,ساخت درب آهنی, ساخت محافظ بالکن و نرده بازسازی راه پله آپارتمان,تعویض سنگ راه پله آپارتمان,تعویض سنگ نما وپیچ رول پلاک سنگ نما,نوسازی آشپزخانه
  • اضافه کردن اتاق خواب, ساخت حمام دستشویی توالت فرنگی ،سرویس بهداشتی در دیگرجاهای ساختمان, تبدیل سرویس بهداشتی (توالت ایرانی) به فرنگی و تغییر فرنگی به ایرانی
  • رفع لرزش سقف یا ترک خوردگی اجزای ساختمان و انجام تعمیرات ساختمان
  • رفع نم سرویس ها و پشت بام
  • قیرگونی,ایزوگام,اسفالت
  • لوله کشی سرد و گرم, نصب ابگرمکن نصب پکیج بجای شوفاژقدیمی و..
  • گچ کاری, گچ بری,سفیدکاری,ایجاد نور مخفی,ابزارگچی
  • موکت,کفپوش, دیوار پوش,لمینت,پارکت,دیوارپوش,سقف کاذب,کناف
  • نقاشی ساختمان رنگ روغنی رنگ پلاستیک روغنی ,لکه گیری
  • نصب کاغذ دیواری ایرانی وخارجی و ترکیب نقاشی و کاغذ دیواری
  • سنگ انتیک شیشه تزیینی شیشه میرال
  • سیم کشی رفع خرابی برق کاری,ایفون تصویری,دوربین مداربسته,انتن مرکزی
  • ایجادفضای سبز و روف گاردن در پشت بام
  • درب ریموت دار پارکینگی و کرکره ای

مراحل بازسازی افزیر

  • بازدید رایگان کارشناس بازسازی شرکت و ارایه مشاوره به کارفرما با توجه به خواسته های وی
  • ارائه طرح کارشناس با توجه به نظر کارفرما و با در نظر داشتن معیارهای مهندسی، زیبا شناسی، اقتصادی و…
  • انجام عملیات اجرایی


:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , ,
تاریخ : یک شنبه 14 مرداد 1397
بازدید : 378
نویسنده : افزیر

 

 

 

 

در بسیاری از مناطق زلزله خیز جهان از جمله ایران تعداد زیادی از ساختمان های بنایی وجود دارند

 که بسیاری از آن ها برای بار های لرزه ای طراحی نشده اند.

  زلزله های اخیر نشان داده است که این ساختمان ها در برابر بارهای لرزه ای آسیب پذیر بوده و نیاز به مقاوم سازی دارند.  بر پایه تحقیقات به عمل

آمده بیش از 70 درصد از سازه های موجود در سرتاسر جهان ساختمان های بنایی هستند.

   زلزله های قوی و متوسط می توانند صدمات و خسارت جبران ناپذیری را بر این گونه سازه ها وارد نمایند که بخش عمده ی

    این خسارات برای سازه های بنایی است. بنابراین بررسی آسیب پذیری این نوع سازه تحت اثر زلزله دارای اهمیت خاصی می باشد .

  همچنین اغلب سازه هایی که دارای اهمیت تاریخی می باشند، با استفاده از مصالح بنایی ساخته شده اند.

 

   

 

 


از طرفی با توجه به اینکه خرابی و جایگزینی این ساختمان ها به دلایل بسیاری امکان پذیری نیست احتیاج به روش های مقاوم سازی ساختمان های غیر مسلح بیشتر احساس می شود. روش های متعارف متفاوتی برای مقاوم سازی موجود است که هر کدام از این روش ها بر پایه افزایش مقاومت و یا شکل پذیری دیوارهای غیر مسلح بنایی استوار است.
وزن زیاد، ضعف مقاومتی ملات، کمبود نسبی دیوارهای بنایی (تراکم کم) و وجود بازشوهای بزرگ باعث ضعف مقاومتی ساختمان شده و ساختمان با وجود انسجام کافی ممکن است قابلیت عملکردی مورد نظر را نداشته باشد.
سازه های بنایی به دو دسته بنایی مسلح و بنایی غیر مسلح تقسیم می شوند. سازه های بنایی مسلح سازه هایی هستند که محاسبات سازه ای برای آن ها به طور کامل انجام شده است و سازه های بنایی غیر مسلح سازه هایی هستند که محاسبات سازه ای برای آنها در نظر گرفته نشده اما المان ها و اجزایی برای مهار بار جانبی در آن تعبیه شده است.
ساختمان های بنایی از مصالح آجر و ملات ساخته شده اند که درز ملات این بناها به عنوان یک نقطه ضعف اصلی در بار جانبی زلزله می باشد. به این دلیل مودهای شکست ، لغزش درز ملات و کشش قطری در رفتار درون صفحه ای و کمانش خارج از صفحه دیوارها در زلزله های گذشته بیشترین عامل تخریب ساختمان را داشته است.

مکانیزم فرو ریزش ساختمان های بنایی

 
مکانیزم فرو ریزش ساختمان های بنایی

روش های مقاوم سازی سازه های بنایی

اصل ضروری در مقاوم سازی سازه های بنایی در برابر زلزله برای داشتن استحکام و مقاومت در برابر بارهای لرزه ای به هم پیوسته بودن سقف، دیوار و فونداسیون به یکدیگر است. در اصطلاح به این عملکرد سازه، عملکرد جعبه ای می گویند. علاوه بر این که سازه باید عملکرد جعبه ای خوبی داشته باشد میزان باز شو های آن نیز باید محدود و به خوبی مهار شوند.

مودهای شکست دیوار آجری

مود های شکست یک دیوار آجری مجزا به دو گروه عمده شکست درون صفحه ای و شکست برون صفحه ای تقسیم می شوند. در حالت شکست درون صفحه ای معمولا یکی از مودهای زیر رخ می دهد:
1. درصورتی که دیوار تحت بار قائم زیاد بوده و نسبت ارتفاع به طول دیوار کمتر از واحد باشد، مود شکست
برشی رخ می دهد.
2. همچنین اگر نسبت ارتفاع به طول بزرگتر از واحد باشد (تقریبا برابر2) و مقدار بار قائم بسیار زیاد باشد، باز هم امکان شکست برشی وجود دارد.
3. در صورتی که مقاومت برشی دیوار، اندک بوده و بار جانبی در مقایسه با بار قائم، بزرگ باشد، شکست برشی – لغزشی رخ خواهد داد .در این حالت معمولا نسبت ارتفاع به طول دیوار در حدود 1.5 به 1 می باشد.
4. در صورتی که مقاومت برشی دیوار به اندازه کافی باشد و نسبت ارتفاع به طول ستون در حدود 2 به 1 باشد، آنگاه شکست خمشی رخ می دهد.
در حالت شکست برون صفحه ای معمولا یکی از مودهای زیر رخ می دهد:
1. اگر تنش کششی منجر به شکست، موازی درزهای افقی آجرها باشد، ترک قائم در ارتفاع دیوار به وجود می آید. این شکست معمولا هنگامی رخ می دهد که طول دیوار بزرگ باشد.
2. اگر تنش کششی منجر به شکست، عمود بر درزهای افقی آجرها باشد، ترک افقی در میانه دیوار به وجود می آید .این شکست معمولا هنگامی رخ می دهد که ارتفاع دیوار بزرگ باشد.

مودهای شکست درون صفحه و برون صفحه دیوار آجری

 

تعمیر سطوح

تعمیر سطوح از روش های متداول مقاوم سازی می باشد. تکنیک های متفاوتی برای تعمیر سطوح وجود دارد که مهم ترین آن ها ملات با تور سیمی و بتن پاشی است. این روش ها به طور طبیعی با پوشش خارجی سطوح بر روی ظاهر معماری و تاریخی بنا تاثیر گذار بوده و از جمله نقاط ضعف این نوع مقاوم سازی می باشد.

ملات با تور سیمی

ملات با تور سیمی شامل چندین لایه از شبکه میلگرد با قطر کم و با چشمه های بسیار ریز است که در شکل زیر نمایش داده شده است. ملات سیمان با مقاومت بالا با ضخامتی در حدود 10 الی 55 میلی متر بر روی مش مذکور ریخته می شود.

بتن پاشی

یکی دیگر از روش های موجود برای مقاوم سازی ساختمان های بنایی غیرمسلح پوشش دادن دیوار و یا پایه ها با شاتکریت می باشد. روش کار بدین صورت است که پوشش بتن بر روی شبکه آرماتورهای موجود پاشیده می شود. در این روش اگر طراحی به درستی صورت پذیرد، فولادهای استفاده شده برای مسلح سازی ظرفیت بالایی از جذب انرژی را به ساختمان های بنایی غیرمسلح اضافه می نمایند. باید توجه نمود که حداقل آرماتورهای شبکه همان میزان آرماتور افت وحرارت جهت کنترل ترك باشد. برای این که دیوار و بتن پاشیده شده مانند یک جسم مرکب عمل کنند باید اتصالات برشی میان آن دو تعبیه شود. برای پر نمودن سوراخهایی که برای ثابت نگه داشتن اتصالات برشی به کار می روند نیز می توان از اپوکسی و یا گروت سیمانی استفاده نمود. ضخامت پوشش بتن پاشیده نیز با توجه به میزان لرزه خیزی منطقه متفاوت است که حداقل60 میلی متر می باشد. جهت ایجاد چسبندگی لازم میان آجر و پوشش شاتکریت باید ابتدا آجر را به حالت اشباع در آورد تا آب موجود در شاتکریت را جذب نکرده و سبب ایجاد ترك در بتن پاشیده شده نشود و سپس لایه ای مانند اپوکسی را برروی آجر پاشیده و بعد از آن بتن پاشیده شده را بر روی اپوکسی شوت نماییم. اگر بتن پاشی به طریقه بالا صورت پذیرد می توان مقدار بار نهایی ساختمان های بنایی غیر مسلح را افزایش دهد.

روش اصلاح نقاط ترک خورده

این روش به منظور ایجاد عملکردی یکنواخت و یکپارچه در دیوار بنایی استفاده می شود.
مراحل اجرای آن به صورت خلاصه به شرح زیر است:
الف) مقاوم سازی سازه بنایی با استفاده از دوخت قطعات بنایی در محل ترك با استفاده از میله فولادی
ب) مقاوم سازی سازه بنایی با استفاده از دوخت قطعات بنایی در محل ترك با استفاده از شبکه فولادی (مش فولادی)

افزودن دیوارهای داخلی جهت بهبود عملکرد لرزه ای ساختمان بنایی

افزودن پشت بند جهت مقاوم سازی سازه های بنایی

این روش یک روش مقاوم سازی ارزان برای سازه های بنایی محسوب می شود .این روش با مصالح مرسوم و ارزان قابل اجرا است. برای اجرای این روش نیروی متخصص لازم نیست و حتی معمارهای محلی در روستاها نیز قادر به اجرای آن هستند.

 

مقاوم سازی با بتن شاتکریت یا بتن پاششی

رایج ترین روش مقاوم سازی ساختمان های بنایی استفاده از شاتکریت بر روی دیوارها می باشد. این لایه علاوه بر ایجاد انسجام مناسب در دیوارهای بنایی مقاومت و شکل پذیری درون صفحه و برون صفحه دیوارها را نیز افزایش می دهد. در این روش ابتدا یک شبکه میلگرد بر روی دیوار قرار می گیرد که باید توسط بولت به دیوار دوخته شود. سپس بر روی این شبکه میلگرد بتن پاشیده می شود. شبکه میلگرد به همراه بتن پاشیده شده همانند یک لایه بتن مسلح بوده و باعث بهبود رفتار لرزه ای دیوار می شود.

شرح روش اجرایی شاتکریت در مقاوم سازی دیوار بنایی
در این روش، شبکه میلگردهای افقی و قائم به دیوار نصب شده و لایه هایی از بتن به روی شبکه میلگردها پاشیده می شود. این روش شامل مراحل ذیل می باشد:

• تعبیه شبکه میله گردهای افقی و قائم و اتصال آن بوسیله آرماتورهای دوخت به دیوارموجود
• عملیات پاشیدن بتن به ضخامت معین به سطح شبکه آرماتور(شاتکریت)
• اتصال شبکه آرماتوربه فونداسیون

پر کردن باز شوها

یک روش ساده برای مقاوم سازی در صفحه یک دیوار برشی پر کردن بخش و یا تمام پنجره ها یا درهای غیر ضروری میباشد. این عمل از تمرکز تنش که در گوشه های باز شوها تولید می شود و سبب ایجاد ترك است جلوگیری می نماید و همچنین باعث افزایش سختی جانبی دیوار می شود. نکته مهم در پر کردن بازشوها این است که قسمت های پر شده با قسمت های موجود به شکل در هم تنیده اجرا شود و یا نوعی از اتصالات برشی بین آن دو تعبیه شود. این عمل باعث ایجاد عملکرد واحد دیوارهای موجود با بازشوهای پرشده می گردد.

بزرگ کردن باز شوها

متناوبا بزرگ کردن بازشوها به وسیله حذف کردن بخشی از مصالح بنایی نیز یکی از راه حل های پیشنهادی می باشد. در این روش چون شکست برشی دیوار باعث آسیب بیشتر خواهد شد، در بعضی حالات با افزایش نسبت ارتفاع به طول دیوار میتوان شکست برشی را تبدیل به شکست خمشی نمود. این تکنیک برای افزایش نسبت طول به عرض پایه ها به کار برده می شود و باعث می شود تا رفتار آن از حالت برشی به حالت خمشی تبدیل شود. این عمل شکل گسیختگی را از حالت شکننده به شکل پذیر تغییر می دهد.

افزایش بارهای قائم

افزودن بارهای قائم به ساختمانهای بنایی غیرمسلح معمولا عملکرد دیوار را تحت بارهای داخل و خارج از صفحه بهبود می بخشد. بارهای قائم در کنار هم نگه داشتن ماتریس بنایی کمک میکند و همچنین بعد از وقوع ترك سبب تولید نیروهای اصطکاکی بیشتری می شود. در این روش، مقاوم سازی میتواند به سادگی و با افزودن وزن سازه انجام شود و یا با اجرای میله و یا کابلهای پس تنیده تنش قائم بر روی اجزا دیوار اعمال کرد. البته این روش باید به دقت انجام گیرد زیرا به مانند نیروهای قائم تنشها روی ساختمان های بنایی غیرمسلح افزایش می یابد و می تواند به گسیختگی شکننده ناشی از خرد شدگی منجر شود. همچنین طراح باید افت کشش ناشی از خزش و انقباض مصالح بنایی را در محاسبات وارد نماید.

تقویت اتصالات دیوار دیافراگم

یک مشکل عمده در رابطه با ساختمانهای بنایی غیرمسلح ناکافی بودن و یا کاهش یافتن پیوستگی میان دیوار و دیافراگم است. این ارتباط از آنجا که سبب مهار بندی دیوار می شود و در مورد دیافراگم های صلب دیوارهای موازی را مجبور می نماید تا با یکدیگر عمل کنند، معیار مهمی در رفتار کلی ساختمان می باشد.

تعبیه شبکه میله گردها و اتصال آن به دیوار موجود

1. کلیه اندودهای دیوار آجری (پلاستر گچ و گچ خاك) با هر ضخامتی که دارند برداشته شوند. در حین انجام این کار باید توجه شود که به سطح دیوار آجری آسیبی نرسد، همچنین بعد از برداشتن پلاسترها باید سطح دیوار با برس فلزی تمیز شود.
2. سوراخ هایی به فاصله افقی 25 سانتی متر و عمودی 50 سانتی متر از هم به عمق 20 سانتی متر روی دیوار آجری به منظور قرار دادن آرماتور های دوخت ایجاد شود. آرماتورهای برشگیر (دوخت)، با طول حداقل 30 سانتی متر که قسمت انتهایی آنها به صورت قلاب 180 درجه با طول خم 4سانتی متر می باشد، در سوراخ ها قرار داده می شوند و در نهایت سوراخها با چسب اپوکسی پر شده تا آرماتورها در جای خود محکم شوند ( انجام این مرحله با روش خاص شرکت مجری تخصصی کاشت بلامانع است).
3. در مرحله بعد باید شبکه هایی از آرماتورهای افقی و قائم روی سطح دیوار قرار داده شوند. به همین منظور آرماتورهای 6φ
با فواصل افقی و عمودی 6 سانتی متر روی دیوار قرار داده شده و برای اینکه آرماتورها در روی دیوار آجری محکم شوند تا در هنگام بتن پاشی از آن جدا نگردند، لازم است در محل تقاطع با آرماتورهای برشگیر با مفتول به آنها وصل شوند.
4. در این مرحله باید عملیات شاتکریت، تا جایی که شبکه های آرماتور درون بتن مدفون گردند، انجام شود. به همین منظور باید ضخامت بتن پاشیده شده بر سطح دیوار حداقل 8 سانتیمتر باشد. مقاومت بتن شاتکریت حدود 100 کیلو گرم بر سانتی متر مربع می باشد. پاشش شاتکریت به دیوار به دو صورت پاشش » تر «و » خشک « قابل انجام است. در روش پاشش تر بتن تازه با هوای فشرده مخلوط شده و با پمپ به دیوار بنایی پاشیده می شود. در روش پاشش خشک بتن خشک با هوا مخلوط شده و پس از هدایت به محل، باآب پرفشار نیز مخلوط و سپس به دیوار پاشیده می شود. در روش پاشش خشک، فشار هوا در پمپ برای
طول لوله 30 متر باید حداقل 0.3 مگا پاسکال باشد و برای طولهای بیشتر به ازای هر 05 متر،0.033 مگا پاسکال به فشار اضافه می شود .همچنین فشار آبی که در روش خشک به مخلوط تزریق می شود حداقل 0.1 مگا پاسکال بیشتر از فشار هوای مخلوط است.

تزریق اپوکسی و گروت

برای اجرای این روش بایستی تجهیزات تزریق رزین خریداری شود؛ ولی این روش میزان مصرف رزین را به سبب اینکه تنها نیاز به پر کردن ترك ها وجود دارد، بهینه می کند. برای اجرای این روش نیز حداقل یک نیروی متخصص لازم است. از جمله راههای متداول مقاوم سازی بوده که در این روش برای برگرداندن مقاومت ساختمانهای بنایی غیر مسلح، تركها و حفره های توخالی که به علت تخریب شیمیایی و فیزیکی سطح یا فعالیتهای مکانیکی به وجود آمده است توسط گروت یا اپوکسی پر می شود. برتری این روش نسبت به روش تعمیر سطوح عدم تخریب سطح و به تبع آن حفظ زیبایی معماری و بافت تاریخی ساختمان های بنایی غیر مسلح است. موفقیت این روش به تکنیک تزریق و یکسان بودن مقاومت، مدول الاستیسیته و مشخصات حرارتی گروت با مصالح بنایی موجود بستگی دارد.
برای تركهای کوچکتر از 5 میلیمتر از رزین اپوکسی و برای تركهای بزرگتر و حفره ها میتوان از گروت های 8 میلیمتر پیشنهاد شده که از گروت سیمانی همراه با ماسه استفاده نمود. بررای سوراخهای بزرگتر از 8 میلی متر پیشنهاد شده که از گروت سیمانی که دارای سیمان پرتلند تیپ 3 همراه با مواد منبسط کننده و نسبت آب به سیمان 75 استفاده شود.

دوخت فونداسیون

برای مقاوم سازی کامل ساختمان باید مقاوم سازی فونداسیون آن نیز در صورت نیاز به نحو مطلوبی انجام گردد تا بتواند نیروهای ناشی از زلزله را به خاك منتقل نماید. در صورت عدم مقاومت کافی فونداسیون تحت لنگرهای خمشی و نیروهای برشی وارده از طرف سازه دچار گسیختگی می گردد. همچنین در صورت عدم کفایت سطح تماس فونداسیون با خاك زیر آن احتمال تسلیم شدن خاك و در نتیجه ایجاد نشست ماندگار خاك زیر پی افزایش می یابد. برای تقویت فونداسیون موجود می توان شبکه هایی از آرماتور در اطرف پی موجود در نواحی ضعیف قرار داد و بتن ریزی نمود. اتصال فونداسیون الحاقی به فونداسیون جدید توسط آرماتورهای دوخت صورت می گیرد. از آن جاییکه مصالح لازم برای اجرای این روش به آسانی پیدا می شود و اجرای آن نیز بسیار راحت است، هزینه این روش بسیار پایین است. برای اجرای این روش نیروی متخصص لازم نیست و حتی معمارهای محلی در روستاها نیز قادر به اجرای آن هستند و این مسائل این روش را به عنوان روشی آسان برای مقاوم سازی دیوارهای بنایی ترك خورده مبدل کرده است.

استفاده از روش مقاوم سازی با مصالح FRP

سابقه استفاده از مصالح در صنعت ساختمان کشور ایران به حدود یک دهه می رسد اما امروزه استفاده از کامپوزیت های با زمینه پلیمری در بهسازی سازه ها از رشد قابل توجهی برخوردار بوده است که دلیل اصلی آن نیاز به افزایش عمر بهره برداری و ارتقای اساسی زیرساخت ها در تمامی نقاط دنیا می باشد.
الیاف FRP می توانند توسط روش های دستی، دورپیچی با دستگاه مکانیزه، دستگاه آغشته ساز الیاف و…
بر روی المان های مورد نظر نصب گردند.
1. آماده سازی سازه مقاوم سازی: قبل از هرگونه اقدام به تقویت با ورقه های FRP بایستی در صورت نیاز بتن تخریب شده را جدا کرده و در صورت رسیدن به آرماتور خورد شده اقدامات مربوط به ترمیم و یا تعویض آن ها را صورت دهیم.
2. به کار بردن آستری یا پرایمر FRP: برای افزایش چسبندگی و جلوگیری از جدایش ورقه FRP از لایه چسب یا رزین اپوکسی بین بتن و ورقه، با غلتک یک لایه اپوکسی FRP با لزجت کم به طور موضعی روی سطح مورد نظر به عنوان پرایمر می مالند.
3. بتونه کردن سطح مقاوم سازی: یک لایه چسب FRP با ویسکوزیته بالا برای پرکردن خلل و فرج و فرورفتگیها در محلهای مورد نیاز به کار برده می شود. چسبندگی مناسب الیاف یا لمینت FRP با اجرای مستقیم مصالح ترمیم بر روی لایه زیرین که به درستی آماده شده است حاصل می شود.
4. بریدن شیت بر روی یک سطح تمیز و آماده که عاری از هر گونه آلودگی، چسب و ناصافی است ورقه FRP مطابق مشخصات و جزئیات ارائه شده بریده می شود.
5. اشباع کردن الیاف FRP: در پروژه های بزرگ مقاوم سازی ورقه ها با دستگاه های گرداننده خاص در کارخانه اشباع می شوند و لایه اپوکسی یا ماتریس رزین به آن اضافه می شود و فقط کافی است در محل مورد نظر چسبانده شود ولی در کارهای کوچکتر در محل کارگاه رزین FRP روی سطح موردنظر مالیده شده سپس ورقه FRP خشک و بدون چسب بر روی سطح چسبانده می شود.
6. نظارت بر کنترل کیفیFRP: در زمان عمل آوری 2 تا 6 ساعت بسته به شرایط حاکم، سطح مقاوم سازی شده با FRP چک و کنترل می شوند تا هیچ گونه حباب هوا بین لایه FRP و بتن حبس نشده باشد و خم شدگی یا بیرون زدگی وجود نداشته باشد.
7. اطمینان از کیفیت اجرای مقاوم سازی باFRP: گزارش های کنترل کیفیت تهیه شده و به خوبی نگهداری می شوند تا اطمینان از اجرای موفقیت آمیز ترمیم، تقویت و تعمیر با FRP حاصل شود.
8. لایه رویه FRP: پس از عمل آوری و نظارت بر کیفیت اجرای مقاوم سازی، ورقه های FRP به منظور حفاظت، نگهداری و حفظ زیبایی و معماری با یک لایه بتن رویین یا ماده ای دیگر پوشانده می شوند.

 

منبع : افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
تاریخ : شنبه 13 مرداد 1397
بازدید : 61
نویسنده : افزیر

 

با توجه به زلزله‌خیز بودن کشور ایران احیای ساختمان‌های آسیب‌دیده در کنترل بحران پس از زلزله و همچنین حفظ سرمایه ملی مؤثر از مسائل مهم و ضروری می‌باشد. زلزله به همه سازه‌ها آسیب وارد خواهد کرد که گاه این آسیب همراه با تخریب کامل خواهد بود و گاه با تخریب قسمتی از ساختمان خواهد بود که این تخریب خود به طرق مختلفی رخ می‌دهد که در اکثر موارد می‌شود با مقاوم سازی و ترمیم سازه‌ها کاربری آن را دوباره احیا کرد. حال به چندین روش این مقاوم‌سازی در سازه‌های فولادی آسیب‌دیده زلزله می‌پردازیم.

انتخاب روش مناسب برای مقاوم‌سازی سازه های فولادی تخریب شده در زلزله

دو روش عمده برای ارتقاء شرایط موجود به منظور مقابله با آثار مخرب زلزله به صورت زیر است:

کاهش دادن نیروی زلزله وارد بر ساختمان

نیروی زلزله وارد بر ساختمان با وزن آن نسبت مستقیم دارد، بنابراین با کاهش وزن ساختمان می‌توان نیروی زلزله وارد بر ساختمان را کم کرد،برای این منظور می‌توان از طریق تبدیل کردن دیوارهای سنگین به دیوارهای سبک،استفاده از بتن سبک سازه‌ای، سبک کردن سقف‌ها و کم کردن طبقات اقدام کرد.

افزودن سیستم سازه‌ای جدید برای مقابله با نیروی زلزله

یکی از راه‌های بسیار مؤثر برای مقابله با نیروی زلزله، افزودن سیستم‌های سازه‌ای جدید به ساختمان می‌باشد. این روش در سالیان اخیر توجه زیادی را به خود جلب کرده است و می‌توان مهم‌ترین روش‌های قابل انجام را به شرح زیر نام برد:

  • افزودن سیستم دیوار برشی در یک قاب ساختمانی بتن آرمه با یا بدون دیوار برشی
  • استفاده از مهاربندی‌های هم‌مرکز (CBF)
  • استفاده از مهاربندی‌های غیر هم‌مرکز (EBF)
  • استفاده از میانقاب‌ها
  • استفاده از بادبندهای میراگر ویسکو الاستیک

لازم به توضیح است که استفاده از هر یک از روش‌های فوق به تنهایی یا به صورت ترکیبی با روش‌های دیگر منوط به مطالعه کامل سازه می‌باشد و باید مورد به مورد بررسی گردد.

تعمیر و تقویت لرزه‌ای اعضای ساختمانی موجود

دورپیچ کردن با فولاد، افزایش سطح مقطع بتن با بتن‌ریزی و اضافه کردن آرماتور، استفاده از صفحات فولادی، استفاده از آرماتور خارجی، تزریق اپوکسی، بخیه زدن، پیش تنیدگی خارجی و استفاده از روش‌ها و مصالح نوین مانند میراگرها، سیمان الیافی، مواد مرکب سیمانی وFRP ها از جمله روش‌هایی هستند که اعضای ساختمانی بسته به درجه مقاومت ساختمان در برابر زلزله، سطح خسارت محتمل، نوع اعضاء و اتصالات آن‌ها  می‌تواند به وسیله آن‌ها تعمیر و تقویت شوند. روش‌های فوق‌الذکر به جز روش‌های استفاده از مصاح نوین، از روش‌های متداول و مرسومی می‌باشند که برخی از آن‌ها سالیان درازی است که برای تقویت سازه‌های فولادی استفاده می‌گردد.

در این روش از ورق فولادی نازک جهت پوشش ستون‌ها استفاده می‌شود. پوشش ستون‌ها به صورت کامل بوده و دورتادور ستون توسط ورق‌های فولادی که ضخامتی بین 4 تا 8 میلی‌متر دارند پوشیده می‌شود.این ورق‌ها به طور پیوسته به یکدیگر جوش داده می‌شوند. پوشش استوانه‌ای شکل حاصل بر روی بتن در مهار تنش‌های محیطی ستون عملکرد مناسبی از خود نشان داده است. در صورت مستطیل بودن ستون می‌توان دو ورق L شکل ویل چهار تسمه فولادی قائم را به یکدیگر(توسط چهار نبشی)جوش داد. در این روش شکل‌پذیری و مقاومت محوری ستون به طور موضعی افزایش می‌یابد.فضای خالی بین بتن و پوشش فولادی توسط پرکننده‌هایی نظیر دوغاب سیمان منبسط شونده و یا بتن  اشغال می‌گردد. این روش ابعاد سازه را تغییر نمی‌دهد ولی وزن سازه با استفاده از ورق‌های فولادی افزایش قابل ملاحظه‌ای می‌یابد.

افزایش سطح مقطع با بتن‌ریزی و اضافه کردن آرماتور

از این روش نیز برای ستون‌هایی که دچار آسیب‌دیدگی شده باشند استفاده می‌شود. این روش ظرفیت باربری ستون را افزایش داده و در عین حال می‌تواند مرمت عضو را نیز شامل گردد. استفاده از این روش بر حسب موقعیت ستون و فضاهای قابل دسترسی اطراف ستون می‌تواند در یک،دو،سه یا هر چهار طرف ستون انجام گیرد. مسلح کننده بتن در این روش می‌تواند پروفیل، ورق فولادی و یا آرماتور باشد. با این روش مقاومت محوری وبرشی ستون افزایش می‌یابد ولی مقاومت خمشی ستون به علت عدم عبور مسلح کننده‌ها از سقف افزایش نمی‌یابد. در صورت تقویت  نمودن ستون بین طبقات ممکن است کل سازه رفتار نامناسبی از خود نشان دهد و کمکی در برابر زلزله ننماید. از این‌رو توصیه می‌شود دیوار برشی هم در این‌گونه مواقع به سیستم اضافه شود و یا آرماتور طولی تقویتی از میان سوراخ‌های ایجاد شده در دال سقف عبور نموده و در محل اتصال تیر به ستون بتن‌ریزی گردد.

تزریق اپوکسی

عمل تزریق جهت مرمت تیرهای با ترک‌های جزئی به کار می‌رود. در صورت تمیز بودن سطوح تماس بتن می‌توان با تزریق رزین‌های اپوکسی  با روانی بالا مقاومت کشششی-برشی سازه را بهبود بخشید. چون ترک در اثر تنش‌های کششی به وجود می‌آید، چنانچه این تنش‌ها پس از تعمیر  ترک باز هم بوجود آیند ترک مجدد ایجاد خواهد شد. چنانچه برطرف کردن این تنش‌ها غیر ممکن باشد توصیه می‌شود که در طول سطح ترک یک برش به عنوان درز انقباض یا جابه‌جائی استفاده شود.

استفاده از آرماتور خارجی

در این روش آرماتورهای معمولی از بیرون به مقطع تیر بسته شده و در دو انتهای آن مهار می‌گردند. البته لازم به ذکر است که مهار آرماتورها در انتهای تیر بسیار مهم و حساس بوده و از نظر اجرا مشکل و پرهزینه می‌باشد. میلگردهای خارجی را می‌توان با عبور دادن از سوراخ‌های صفحه‌ای که پشت ستون تعبیه شده و پیچ کردن آن‌ها به صفحه مهار نمود. البته این راه از لحاظ اجرا به دلیل نیاز احتمالی به سوراخ کردن ستون مشکل و یا حتی غیر ممکن خواهد بود. به همین سبب روش دیگری پیشنهاد شده است، بدین صورت که با پوشش محل اتصال تیر و ستون به‌وسیله ورق و جوش دادن یک صفحه فولادی ضخیم به آن می‌توان میلگردها را به راحتی مهار کرد. برای اینکه میلگرد تحت اثر وزن خود دچار خیز نشود با رزوه کردن انتهای میلگرد می‌توان آن‌ها را به صفحه فولادی پیچ نمود و با پیچاندن مهره، انتهای آن را تحت کشش قرار داد. برای اینکه میلگردها از جای خود نلغزند می‌توان پس از پیچاندن مهره دو انتهای آن را به صفحات فولادی جوش داد.

استفاده از پیش تنیدگی خارجی

این روش از طریق ایجاد پیش تنیدگی در کابل‌هایی که از بیرون در امتداد طول سازه تعبیه می‌گردند انجام می‌شود. تاریخچه استفاده از پیش تنیدگی خارجی به بعد از جنگ جهانی دوم بر می‌گردد که به علت بکارگیری نامناسب آن، نتیجه خوبی به دست نیامد. بین سال‌های1960 تا 1970 تنها تعداد محدودی پل با استفاده از این روش تقویت شدند. این روش به چندین علت از جمله مسائل مربوط به حفاظت کابل در برابر خوردگی مورد توجه قرار گرفت. اما بعد از چندین سال این روش در فرانسه با شیوه‌ای مناسب و مطلوب توسعه داده شد و در حال حاضر به عنوان روشی جامع در تقویت اعضای سازه‌ای کاربرد دارد. امروزه عملاً تمام پل‌های بزرگ با این روش مقاوم می‌شوند. تجربه مقاوم‌سازی پل‌ها با این روش، طراحان را با تعریف و کاربرد پیش تنیدگی خارجی در طراحی سازه‌ها آشنا ساخت. با وجودی که این روش در ابتدای امر به عنوان یک روش مقاوم‌سازی مطرح گردید، اما پس از فراموشی در یک دوره کوتاه‌مدت، دوباره با کاربردی جدید در طراحی سازه‌ها، علاوه بر کاربرد به عنوان یک روش مقاوم‌سازی مطرح گردید. کمیته آیین‌نامه ACI224 پیش تنیدگی خارجی را به عنوان یک روش تحلیلی برای مقاوم‌سازی مطرح کرده است. در بکارگیری این روش باید به سه موضوع توجه ویژه مبذول داشت :

1) طرح مهارها

2) نصب انحراف دهنده‌ها

3) محافظت کابل‌ها در برابر خوردگی

امروزه مقاوم‌سازی با کابل‌های پیش‌تنیده خارجی یک روش بسیار کاربردی می‌باشد. اما بکارگیری آن نیازمند مهارت خاص و استفاده از تجهیزات مدرن است، لذا انجام آن، محدود به کشورهای پیشرفته و در حال توسعه می‌باشد.

استفاده از صفحه فولادی

این روش پس از پیشرفت صنعت شیمی و ساخت چسب‌های اپوکسی در حدود 30 سال پیش مطرح شد و در حال حاضر در تمام دنیا مورد استفاده قرار می‌گیرد. اگرچه کاربرد آن در آمریکای شمالی محدود شده است. در این روش صفحات فولادی توسط چسب اپوکسی به زیر تیر چسبانده می‌شوند. در این صورت عملاً افزایشی در عمق عضو و وزن مرده ایجاد نخواهد شد. علاوه بر اتصال با چسب، می‌بایست انتهای ورق‌ها را با روش‌هایی ویژه به تیر متصل نمود تا از لغزش و جدا شدن آن‌ها از تیر جلوگیری به عمل آید. روش مذکور متنوع، انعطاف‌پذیر، اقتصادی و مناسب است. آنچه در این روش باید کنترل گردد محکم شدن ورق، محافظت در مقابل حریق، شناخت خواص اپوکسی و آماده‌سازی درست سطح بتن و فولاد می‌باشد.

رفتار مطلوب سیستم مرکب حاصل بستگی بسیاری به چسبندگی لایه بین بتن و صفحه فولادی دارد. لذا آماده‌سازی دقیق سطح تماس بتن و صفحه فولادی از ملزومات کاربرد این روش است. محدودیت‌هایی نیز در انتخاب ضخامت ورق وجود دارد چرا که ضخامت نسبتاً زیاد ورق فولادی می‌تواند ترک افقی و جدا شدن آن از بتن تیر را سبب شود. با افزایش عرض ورق، احتمال شکست در چسبندگی و با افزایش ضخامت چسب، احتمال لغزش بین بتن و ورق بیشتر می‌شود. ورق‌های تقویتی فولادی با نسبت عرض به ضخامت (b/t) کمتر از 50 ، به علت تولید تنش‌های بیشتر در مجاورت انتهای صفحات، با شکست زودرس قبل از تخریب خمشی شکل‌پذیر از بین می روند. یادآور می‌شود این روش در محلی از تیر که پوشش بتن روی آرماتور از بین رفته باشد قابل‌اجرا نیست.

امروزه جهت مقاوم‌سازی سازه‌های موجود ،روش‌ها و مصالح نوینی که نتیجه تحقیقات زیادی می‌باشند وجود دارند که در ذیل به چند مورد از آن‌ها بطور خلاصه اشاره شده است:

میراگر اصطکاکی

این میراگر به عنوان قسمتی از سیستم مهاربند جانبی،شامل صفحات فولادی می‌باشد که به یکدیگر بولت شده‌اند و عموماً در قسمت وسط مهاربند x شکل قرار می‌گیرد. سیستمی نظیر این میراگرها وجود دارد که می‌توان آن را بوسیله اتصالاتی در محل تیر-ستون تعبیه نمود. این میراگرها انرژی زلزله را بواسطه لغزش صفحات فولادی بر روی یکدیگر به انرژی گرمایی تبدیل می‌نماید.

سیمان الیافی یا سیمان مسلح شده با الیاف (FRC)

این ترکیب تشکیل شده است از یک شبکه الیاف شیشه با مقاومت بالا و یک لایه نازک سیمان مسلح شده به الیاف. با اضافه نمودن پوشش FRC بر روی دیوار مصالح بنایی غیر مسلح ،مقاومت و شکل‌پذیری آن بدون افزایش سختی، افزایش می‌یابد.

مواد مرکب سیمانی

مواد مرکب سیمانی شکل‌پذیر نظیر (ECC (Engineered Cementitious composites  نمونه‌ای از نسل جدید مصالح می‌باشند که مزیت‌ها و قابلیت‌های زیادی از قبیل جذب انرژی بالا ،مقاومت کششی و فشاری زیاد، قابلیت شکل‌دهی، قابلیت اتصال با بولت ،جوش و گروت برای استفاده در مقاوم‌سازی ساختمان‌های موجود دارند.

رفتار شبه سخت‌شوندگی کرنش (Pseudo Strain Hardening) در پاسخ تنش، این مصالح را منحصر به فرد ساخته است.

مواد تشکیل‌دهنده آن عبارتند از آب،سیمان ،ماسه، الیاف و مقداری مواد شیمیایی افزودنی. بطور کلی به دلیل مقدار کم الیاف مورد نیاز (در حدود2% حجم) نحوه مخلوط کردن آن، شبیه بتن می‌باشد. جهت دستیابی به رفتار منحصر به فرد این مصالح، می‌بایستی از الیاف‌هایی با مشخصات خاص استفاده نمود.

کاربرد مصالح FRP در مقاوم‌سازی سازه‌هاي فولادي

کاربردهاي بسیار زیادي از مصالح FRP چسبانده شده به سازه‌های بخصوص فلزی فولاد و چدن وجود دارد. ابتدا به چند مورد از کاربرد مصالح FRP در سازه‌های فلزي اشاره می‌کنیم و در نهایت به تشریح کاربرد لمینیتهاي CFRP در تقویت تیرورق‌های فولادي خواهیم پرداخت.

کاربرد FRP در تیرهاي کامپوزیتی و تیر ورق‌های فولادي

تقویت تیرهاي فولادي با مصالح کامپوزیتی را به دو قسمت تقویت تیرهاي سالم و تیرهاي آسیب‌دیده می‌توان تفکیک کرد. بیشتر تحقیقات انجام شده در زمینه مقاوم‌سازی تیرهاي فولادي سالم با مواد پلیمر کامپوزیت، مربوط به تیرهاي فولادي مرکب با دال بتنی می‌باشد. این نوع تیرها کاربرد فراوانی در سازه‌های پل و ساختمان دارند. مزیت این نوع تیرها در استفاده فولاد در کشش و بتن در فشار می‌باشد و علاوه بر این دال بتنی وظیفه مهار جانبی بال فشاري را نیز بعهده دارد. تحقیقات انجام شده نشان‌دهنده کاراییروش مقاوم سازی تیرهاي مختلط فولاد و بتن با مواد FRP در بهبود مقاومت نهایی آنها میباشد اما سختی آنها به مقدار کمی افزایش مییابد. براي نمونه توکلی زاده و سعادتمنش تحقیقات تحلیلی و تجربی روي تیرهاي فولادي 30×W14  مختلط با بتن انجام دادند. آنها دو ردیف ورق CFRP به عرض 57 میلیمتر و ضخامت 17.2 میلیمتر روي بال کششی در دو طرف جان چسباندند. ورق‌هاي CFRP از سه نوع یک لایه، سه لایه و پنج لایه مورد استفاده قرار گرفتند. آزمایش خمش چهارنقطهاي روي تیرهاي به طول 4780 میلی‌متر انجام دادند و افزایش بار نهایی براي نمونه‌هاي مقاوم شده با یک لایه، سه لایه و پنج لایه CFRP به ترتیب 44 ،51 و 76 درصد بوده است. همچنی مقدار کرنش کششی در بال ها در یک سطح بار مشخص، براي نمونه‌هاي یک لایه، سه لایه و پنج لایه حدود 21 ،39 و 53 درصد کاهش یافتند و نیز مشاهده شد در نمونه‌هاي با یک لایه CFRP ، مقدار تنش موجود در ورق تقویتی بعد از بار نهایی حدود 75 درصد کاهش یافت، در حالیکه مقدار متناظر براي ورقه‌هاي پنج لایه در حدود 42 درصد بوده است.

استفاده از ورق روسری و زیر سری مضاعف

در صورتی که از جوش ورق های زیر سری و رو سری به ستون اطمینان نباشد، استفاده از ورق های زیر سری و روسری مضاعف می تواند در برنامه کار قرار گیرد. در صورتی که هیچ اطمینانی از جوش ورق روسری موجود به ستون نباشد و یا این جوش از ین رفته باشد، ضخامت ورق روسری و زیر سری باید برای لنگر خمیی تیر طراحی شود. اما اگر اضافه کردن وقت زیر سری و رو سری به منطور تقویت وضعیت موجود باشد، ضخامت آن با توجه به های موجود تعیین می گردد.

استفاده از ماهیچه

اضافه کردن یک مماهیچه باعث انتقال مفصل خمیری از بر ستون به خل تیر می شود. اضافه نمودن ماهیچه در صورت امکان تنها در بال تحتانی تیر نصب شود.

استفاده از مقاطع Tشکل

با استفاده از مقطع T شکل نیز می توان اتصال فولادی را بهسازی لرزه ای نمود. در بعضی از موارد، مقطع را تنها در بال پاییینی اتصال اجرا می نمایند که یا استفاده از این روش می توان بدون تخریب دال، ذاتصال را بهسازی لرزه ای نمود.

روش‌های مقاوم سازی شالوده‌ها

مقاوم نمودن شالوده‌ها به دو روش زیر انجام می‌گردد.

الف) افزایش مقاومت تکیه‌گاه(خاک) شالوده بوسیله ایجاد ‍پی‌های اضافی بزرگتر زیر پی‌های موجود

ب) افزایش وزن شالوده بوسیله پی‌های اضافی و بستن آن‌ها به پی‌های موجود و غیره

 

برای مقاوم سازی سازه ها و ساختمان ها روش های زیادی وجود دارد که برخی از روش های رایج درمقاوم سازی سازه ها عبارتند از:

مقاوم سازی با FRP

بطور کلی مقاوم‌سازی سازه‌های فولادی موجود برای تقویت آن‌ها به منظور تحمل بارهای وارده، بهبود نارسایی‌های ناشی از فرسایش، افزایش شکل پذیری سازه یا سایر موارد با استفاده از مصالح مناسب و شیوه‌های اجرایی صحیح انجام می­گردد. امروزه استفاده از الیاف FRP به‌عنوان یک ضرورت در جایگزینی مصالح سنتی و شیوه‌های موجود شناخته می‌شوند. سیستم اف آر پی FRP  بدین صورت تعریف می­شود که الیاف و رزین‌ها برای ساخت چند لایه مرکب مورد استفاده قرار می‌گیرند، به نحوی که رزین‌های مصرفی (رزین اپوکسی) به منظور چسباندن چند لایه مرکب به سطح بتن زیرین و پوشش‌ها به منظور محافظت مصالح ترکیب شده استفاده می‌شوند. استفاده از FRP  به دلیل وزن کم‏‏، سرعت اجرای بالا‏، مقاومت بالا و عدم ایجاد محدودیت معماری بسیار مورد توجه می‌باشد.

مقاوم‌سازی با اضافه نمودن دیوار برشی و یا بادبند

استفاده از دیوار برشی بتنی در  ساختمان‌ها یکی دیگر از روش‌های مقاوم‌سازی ساختمان می‌باشد. به علت سختی بیشتر دیوار برشی نسبت به بادبند، تعداد دهانه‌های لازم برای تعبیه دیوار برشی کمتر از دهانه‌های لازم برای بادبند است که در نتیجه طرح مقاوم‌سازی مشکلات کمتری در زمینه معماری بوجود می‌آورد. برای اتصال دیوار به ستون باید از خاموت‌های دورپیچ ستون یا بولت به عنوان برش گیر در ارتفاع ستون استفاده کرد. همچنین برای اتصال دیوار به سقف هم باید تمهیداتی اندیشید. نکته مهم دیگری هم که در مورد استفاده از دیوار برشی باید به آن توجه کرد این است که به علت نیروی زیادی که در پی دیوار برشی بوجود می‌آید، احتمالا نیاز به شمع دارد تا بتواند نیرو‌ها را به زمین منتقل کند.

مقاوم‌ سازی با استفاده از جداگرهای لرزه‌ای

نصب جداسازهای لرزه‌ای در تراز پایه ساختمان، با هدف جداسازی حرکتی بین سازه و زمین صورت می‌گیرد. جداسازهای لرزه‌ای، المان‌هایی هستند که سختی جانبی آن‌ها نسبت به سختی محوری­شان بسیار کمتر می‌باشد، لذا با وقوع زلزله، این المان­ها میبایستی مانع انتقال نیرو به سازه‌ی اصلی­ شوند و سازه‌ی اصلی یک حرکت صلب را در حین وقوع لرزش­های زمین تجربه  نماید. عملکرد جداگرها فقط در محدوده خاصی از جرم و ارتفاع ساختمان مطلوب است و به همین دلیل این روش بصورت خیلی محدود و فقط برای ساختمان‌های دارای وزن و ارتفاع مناسب مؤثر بوده و به همین دلیل کمتر از سایر روش‌ها در جهان مورد استقبال کارشناسان قرار گرفته است.

مقاوم سازی با استفاده از سیستم‌های جاذب انرژی (دمپر)

در روش­های کنترل غیر فعال سازه نظیر استفاده از مستهلک کننده‌های ویسکوز و ویسکوالاستیک، جذب انرژی حاصل از حرکات نیرومند زمین توسط مستهلک کننده‌ها صورت گرفته و به سیستم سازه اجازه داده نمی­شود که وارد ناحیه غیر خطی گردد. این امر موجب می­ شود که مقاومت سازه در برابر زلزله‌های با دوره بازگشت طولانی‌تر (که طبیعتاً شدیدتر نیز می‌باشند) بیشتر گردد یا به تعبیر دیگر احتمال فروریزش سازه در برابر این زلزله‌ها کاهش می‌یابد. سیستم‌های جاذب یا مستهلک کننده انرژی  (Dampers ) بر پایه افزایش ضریب میرایی ساختمان بنا شده‌اند. مهمترین تأثیر میرایی، کاهش دامنه نوسان و پاسخ ساختمان نسبت به نیروهای وارده می‌باشد و بدین وسیله قسمت عمده‌ای از انرژی ارتعاشی را قبل از رسیدن پاسخ سازه به حد نهایی به هدر می‌دهند. اتلاف کننده‌های انرژی ممکن است در مهاربندی‌ها، اتصالات و اجزای غیر سازه‌ای و یا دیگر مکان‌های مناسب در ساختمان‌های موجود قرار داده شوند، لیکن ساده‌ترین و  پرکاربردترین آن‌ها استفاده از میراگر در مهاربندها می‌باشد که می­توان از آن‌ها در تمامی طبقات ساختمان سود جست. در برخی از انواع میراگرها ملاحظات زیبایی نیز مدنظر قرار گرفته شده است تا چنانچه بصورت نمایان بکار برده شوند مشکلی از لحاظ معماری ایجاد ننمایند.

منبع : شرکت مقاوم سازی افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه فولادی , پوشش ضد حریق , ,
تاریخ : چهار شنبه 10 مرداد 1397
بازدید : 137
نویسنده : افزیر

 

با توجه به لرزه‌خیز بودن مناطق مختلف ایران و قرارگیری کشور ایران بر روی کمربندهای

مهم لرزه‌ای جهان و وقوع زمین‌لرزه‌های کوچک و بزرگ زیاد در اقصی نقاط کشور اهمیت 

بهسازی و تقویت سازه‌های موجود در برابر زلزله‌ها بخصوص تقویت و بهسازی سازه‌ها و

همچنین سازه‌های آسیب‌دیده پس از وقوع زلزله به دلیل آسیب‌ها و خساراتی که در سازه‌ها

ایجاد می‌شود شامل :

 

 

 

 

  • خسارات سازه‌ای در سازه‌های بتنی

اعم از :

  1. ایجاد ترک‌ها
  2. از بین رفتن پوشش بتن
  3. کمانش آرماتورهای اصلی
  4. شکست‌ها
  5. خستگی در اعضا
  6. ایجاد تنش‌های پسماند
  7. تغییر شکل اعضا تحت اثر نیروی وارده بیش از تنش تسلیم
  8. تخریب کلی اعضا
  • خسارات غیر سازه‌ای

سازه زمانی که تحت اثر نیروی زلزله بخصوص زلزله‌های بزرگ با PGA  های بالا قرار می‌گیرد، مقاومت

و توان تحمل نیروهایی که برای آن طراحی شده است را ندارد. در اثر آسیب‌های ایجادشده و تنش‌های وارده

ظرفیت باربری اولیه و طراحی خود را تا حد قابل‌توجهی از دست می‌دهد و این امر خود عامل اصلی تخریب

سازه‌ها و مرگ میرهای زیاد در زمان پس‌لرزه‌های قوی در مناطق زلزله‌زده می‌باشد.

با تقویت و بهسازی سازه‌ها پس از وقوع زلزله می‌توان ظرفیت باربری آن سازه‌ها را افزایش قابل‌توجهی داد و

با اعتماد از آن‌ها بهره‌برداری کرد و ضریب اطمینان بالاتری جهت زلزله‌های بعدی که احتمال وقوع آن‌ها وجود

دارد به دست می‌دهد.

این روش‌ها باعث افزایش باربری جانبی، افزایش شکل‌پذیری سازه، افزایش پریود و زمان تناوب سازه و همچنین

کاهش نیروهای وارده به سازه تحت اثر زلزله (مانند برش پایه اعمالی به سازه) می‌شوند که بسته به نوع و

روش مقاوم‌ سازی یکی از این نتایج از آن حاصل می‌شود.

سازه‌های بتن آرمه که امروزه استفاده و کاربردهای فراوان و فراگیر در سراسر جهان مانند کشور ما دارند

در موارد زیادی اعم از سازه‌های ساختمانی و غیر ساختمانی مانند ساختمان‌های مسکونی، پل‌ها، مخازن،

سیلوها، دیوارهای حایل، جداره تونل‌ها، سدهای بتنی، تاورها و برج‌ها و …. مورد استفاده قرار می‌گیرند.

به علت این گستردگی در استفاده و همچنین ضوابط و آیین‌نامه‌های طراحی و بعلاوه ضوابط و الزامات

اجرایی که متأسفانه به شکل کامل و صحیح رعایت نمی‌شوند باعث می‌شود که این سازه‌ها دارای

نقاط ضعف و افت‌های سازه‌ای و مقاومتی باشند و این خود اهمیت موضوع مقاوم سازی را برای

سازه‌های بتن آرمه چندین برابر می‌کند.

روش‌های مقاوم‌سازی سازه‌های بتنی تخریب شده در زلزله

برای مقاوم‌سازی سازه‌ها (مقاوم‌سازی ساختمان‌های بتنی، …) و مقاوم‌سازی ساختمان‌ها روش‌های زیادی وجود

دارد که برخی از روش‌های رایج در مقاوم‌سازی سازه‌ها در زیر شرح داده می‌شوند. قابل ذکر است برای مقاوم‌سازی

سازه‌ها روش‌های بسیار متنوعی وجود دارد که روش‌های مقاوم‌سازی مذکور در واقع متداول‌ترین روش‌های

مقاوم‌سازی محسوب می‌شوند.

  • مقاوم‌سازی سازه‌ها و مقاوم‌سازی ساختمان‌ها با FRP
  • مقاوم‌سازی سازه‌ها و مقاوم‌سازی ساختمان‌ها با اضافه نمودن دیوار برشی و یا مقاوم‌سازی سازه‌ها ومقاوم سازی ساختمان‌ها با اضافه نمودن بادبند فلزی
  • مقاوم‌سازی و مقاوم‌سازی ساختمان‌ها سازه‌ها با استفاده از میراگر یا دمپر
  • مقاوم‌سازی سازه‌ها و مقاوم‌سازی ساختمان‌ها با استفاده از جرم‌های متمرکز پاندولی
  • مقاوم‌سازی سازه‌ها و مقاوم‌سازی ساختمان‌ها با استفاده از ژاکت‌های فلزی و بتنی
  • مقاوم‌سازی سازه‌ها و مقاوم‌سازی ساختمان‌ها با استفاده از بادبندهای کمانش تاب
  • مقاوم‌سازی سازه‌ها و مقاوم‌سازی ساختمان‌ها با استفاده از جداگرهای لرزه‌ای

مقاوم‌سازی باFRP

بطور کلی مقاوم سازی سازه‌های بتنی و به طور کل مقاوم‌سازی ساختمان‌ها به منظور تقویت آن‌ها برای

تحمل بارهای وارده، بهبود نارسایی‌های ناشی از فرسایش، افزایش شکل‌پذیری سازه یا سایر موارد با

استفاده از مصالح مناسب و شیوه‌های اجرایی صحیح انجام می‌گردد. استفاده از مواد کامپوزیت به

شکل پلیمرهای مسلح شده با الیاف (Fiber Reinforced Polymers) که به اختصار FRP

نامیده می‌شوند به عنوان یک روش مدرن مقاوم‌سازی و جایگزین مصالح سنتی و شیوه‌های موجود

شناخته می‌شود. مصالح FRP از ترکیب الیاف و رزین ساخته می‌شوند، در فرایند مقاوم‌سازی از

رزین (رزین اپوکسی) برای ایجاد لایه یکپارچه، همچنین چسبیدن سیستم FRPبه سطح بتن زیرین

و ایجاد پوشش به منظور محافظت مصالح استفاده می‌شود. استفاده از FRP به دلیل وزن کم‏‏،

سرعت اجرای بالا‏، مقاومت بالا و عدم ایجاد محدودیت معماری به خصوص در ساختمان‌های بتنی بسیار مورد توجه می‌باشد.

یکی از روش‌های مقاوم‌سازی برای انواع ساختمان‌ها استفاده از الیاف پلیمری می‌باشد. این روش به

لحاظ اقتصادی با روش‌های سنتی مقاوم‌سازی ساختمان قابل رقابت بوده و همچنین دارای قابلیت

اجرای سریع و آسان می‌باشد. مقاوم‌سازی با الیاف پلیمری نسبت بهروش‌های سنتی تداخل کمتری

در کاربری ساختمان در حین اجرا ایجاد می‌کند. در مواردی که استفاده از ماشین‌آلات سنگین و

یا توقف کاربری ساختمان در هنگام اجرا امکان‌پذیر نیست استفاده از الیاف پلیمری (FRP) تنها

روش مقاوم‌سازی می‌باشد. از دیگر مزایای مصالح پلیمری  یا به عبارتی پلیمرهای مسلح شده با

الیاف (FRP) نسبت بالای مقاومت به وزن و سختی به وزن می‌باشد. مقاوم‌سازی با FRP

در قسمت‌های متنوعی از سازه انجام می‌شود. که از جمله می‌توان به مقاوم‌سازی ستون‌ها با

 FRP، مقاوم‌سازی تیر با  FRP، مقاوم‌سازی دال با  FRPو مقاوم‌سازی دیوار با FRP اشاره کرد.

هم اکنون استفاده از این روش در مورد مقاوم سازی ساختمان‌ها، مقاوم‌سازی پل‌ها، مقاوم‌سازی سازه‌های

صنعتی، مقاوم‌سازی سازه‌های بنایی، مقاوم‌سازی سازه‌های بتنی، مقاوم‌سازی ساختمان‌های مسکونی، 

مقاوم‌سازی ساختمان‌های تجاری و … متداول می‌باشد.  همچنین از این روش در مقاوم‌سازی  سیلوها، 

مقاوم‌سازی خطوط لوله،  مقاوم‌سازی نیروگاه‌ها،  مقاوم‌سازی پایه پل‌ها،  و موارد متنوع دیگر استفاده شده است.

روش سنتی استفاده از صفحات فولادی یا همان ژاکت فولادی در مقاوم‌سازی تیرها و عرشه پل  دارای مشکلاتی 

از جمله افزایش وزن سازه، تغییر در سختی سازه ( افزایش نیرو بر روی عضو)، دشواری در دسترسی، 

و زمان بالای اجرا می‌باشد.  استفاده از ژاکت بتنی نیز  مشکلات مشابهی دارد علاوه بر این موارد در

تمامی روش‌های سنتی مقاوم‌سازی ساختمان مشکل تخریب معماری و آسیب به زیبایی ساختمان نیز یکی

از دغدغه‌ها می‌باشد. گاهی حتی استفاده از روش‌های  مقاوم‌سازی ساختمان یعنی ژاکت‌های فلزی

ژاکت‌های بتنی  مشکلاتی از جمله حذف پارکینگ و یا محدودیت‌های دیگر را ایجاد می‌کند.

تقویت ستون‌های بتنی با  FRP

در ستون‌های بتنی مسلح به عنوان اعضای کلیدی مقاوم در برابر نیروهای جانبی و قائم در سازه‌ها،

آسیب‌پذیری بیشتری در برابر زلزله دارند، بنابراین در هر طرح بهسازی موفق، مقاوم‌سازی این اعضا

نقش مهمی را ایفا می‌کند.

هنگامی که یک ستون تحت بارگذاری لرزه‌ای قرار می‌گیرد، ظرفیت جذب انرژی آن بیش از ظرفیت

باربری‌اش می‌باشد و این اصلی‌ترین مسئله است به طور معمول روکش کردن ستون‌ها با بتن مسلح و

یا ورق‌های فولادی افزایش شکل‌پذیری را به همراه دارند البته دو روش فوق معایبی به همراه خواهد

داشت که علاوه بر آن، روکش‌های بتنی و فولادی افزایش سختی ستون را به همراه خواهد داشت که به

نوبه خود باعث ایجاد نیروهای زلزله اضافه به ستون خواهد شد.

در روش بهسازی در جهت افزایش مقاومت، صفحات FRP جهت افزایش مقاومت خمشی ستون به صورت

طولی به آن چسبانده می‌شود (چسباندن طولی FRP) درحالی‌که در رو­ش بهسازی در جهت افزایش شکل‌پذیری FRP ها

 با الیاف اصلی در جهت حلقوی دور ستون و به منظور افزایش شکل‌پذیری آن پیچانده می‌شوند(چسباندن جانبی FRP)

که در هر دو روش ظرفیت جذب انرژی ستون بهبود می‌یابد.

روکش‌های FRP با الیاف افقی

روکش‌های FRP در افزایش ظرفیت برشی و شکل‌پذیری ستون در برابر تحریکات لرزه‌ای مؤثر می‌باشند.

برای تأمین این منظور می‌توان روکش‌های FRP را از روش لایه گذاری‌تر و با دورپیچ کردن صفحات الیاف FRP

و یا دور پیچ کردن با رشته‌های الیاف پیوسته و آغشته نمودن آن‌ها در رزین و پیچاندن آن دور ستون به نحوی که تارهای

اصلی الیاف در جهت افقی باشند به صورت پیش ساخته تهیه نمود. ستون‌های تقویت‌شده با FRP  وقتی در برش قرار گیرند

تنش‌های کششی در FRP در مقاومت برشی کل ستون سهیم می‌شوند. همچنین وقتی این ستون‌ها تحت خمش می‌گیرند، با ایجاد

خاصیت محصور کنندگی خود باعث افزایش مقاومت و کرنش نهایی بتن می‌گردند. افزایش کرنش نهایی بتن در بهسازی لرزه‌ای

از اهمیت خاصی برخوردار است. چرا که این امر باعث افزایش هر چه بیشتر سطح شکل‌پذیری ستون برای رسیدن به تغییر شکل‌های

غیر ارتجاعی می‌گردد.

چنانچه تقویت برشی ستون مد نظر باشد، معمولاً کل ارتفاع ستون توسط FRP روکش می‌شود، ولی در مورد مفاصل

پلاستیک و تقویت محل  وصله‌ها معمولاً لازم است تقویت با روکش فقط در نقاط مستعد مفصل پلاستیک و یا در نزدیکی

این نقاط انجام گردد. برای آنکه روکش FRP مستقیماً تحت بار محوری قرار نگیرد، توصیه می‌شود که بین روکش FRP و

هر عضو سازه‌ای عرضی مجاور (مثلاً شالوده) یک فاصله کوچک (تقریباً 20 میلی‌متر) ایجاد گردد. به عبارت دیگر روکش،

20 میلی‌متر مانده به عضو جانبی قطع شود.

چنانچه در بهسازی لرزه‌ای ستون‌های مستطیلی جهت افزایش اثر محصورکنندگی تغییر شکل مقطع ستون  مد نظر باشد،

بر خلاف تقویت در برابر بار محوری که اصلاح شکل ستون در تمام طول خود انجام می‌گرفت، تغییر شکل فقط در نقاط

مستعد مفصل پلاستیک و نزدیکی آن انجام می‌شود. فاصله بین انتهای ستون و انتهای بتن اضافه شده باید به طور مناسبی

بزرگتر از ستون‌های بدون اصلاح در شکل مقطعشان در نظر گرفته شود تا بار اضافی مستقیماً به بتن و FRP وارد نشود.

ایجاد قید طولی با FRP

محصورکنندگی جانبی FRP به ویژه اگر بار محوری قابل توجهی به ستون اعمال شود باعث افزایش ظرفیت خمشی آن

خواهد شد. ولی چنانچه این افزایش در ظرفیت خمشی جوابگوی بارهای لرزه‌ای مورد انتظار نباشد،  می‌توان از FRP هایی

که الیاف اصلی آن در راستای طولی ستون قرار می‌گیرند استفاده نمود.

به این ترتیب با بهره‌گیری از FRP ستون هم به صورت جانبی و هم در جهت طولی تقویت خواهد شد. به عنوان مثال در

ضرورت تقویت طولی ستون‌ها با FRP می‌توان به ستون بلندی اشاره نمود که در آن به دلیل قطع آرماتورهای طولی در

مقاطع مختلف، ظرفیت خمشی در آن مقاطع کاهش‌یافته است.

نتایج تجربی حاکی از آن است که استفاده از FRP های طولی به همراه FRP  های جانبی در نواحی قطع آرماتورهای طولی اثر بیشتری روی جابجایی خرابی خمشی به نواحی مستعد مفاصل پلاستیک تحت لنگرهای حداکثر (ابتدا و انتهای ستون) دارد.

تقویت دیوارهای برشی با FRP

FRP  می‌تواند تأثیر زیادی در تقویت خمشی و برشی دیوارهای برشی داشته باشد.

تقویت دال‌ها با  FRP

از FRP به شکل مؤثری می‌توان برای تقویت دال‌ها استفاده نمود. افزایش ظرفیت خمشی مثبت و منفی دال‌ها و کنترل ترک‌ها و حتی تغییر شکل دال‌ها از کاربردهای FRP برای تقویت دال‌ها می‌باشد.

تقویت برشی و خمشی تیرها با FRP

بهترین شیوه تقویت برشی تیرها wrapping تیرها توسط ورق‌های FRP می‌باشد. همچنین به راحتی و به شکل بسیار مؤثری می‌توان تیرها را در خمش توسط FRP تقویت کرد.

تقویت اتصالات با  FRP

اتصالات آسیب‌پذیرترین قسمت سازه بوده و در عین حال سخت‌ترین جزء سازه جهت تقویت می‌باشند. تقویت توسط FRP یکی از مؤثرترین و ساده‌ترین روش‌های تقویت اتصالات سازه در مقابله با نیروهای لرزه‌ای (زلزله) می‌باشد.

تقویت تیرها و دال‌ها با FRP

یکی از جدیدترین روش‌های تقویت تیرها در مقابل بارهای لرزه‌ای (زلزله) و کنترل خیز تیرها استفاده از پیش تنیدگی در FRP می‌باشد. استفاده از این تکنیک نیاز به نیروهای متخصص و تجهیزات مخصوص دارد.

روش مقاوم‌سازی با FRP به روش Near Surface Mount) NSM)

در سال‌های اخیر پیش‌تنیده کردن نوارها و تسمه‌های FRP نیز مورد توجه پروژه‌های عمرانی قرار گرفته است. پیش‌تنیده کردن یک عضو باعث بهبود در عملکرد خمشی عضو در محدوده خدمت‌رسانی می‌شود. ایجاد پیش‌تنیدگی باعث کاهش خیز عضو، کاهش ترک‌ها، افزایش بار ترک‌خوردگی و افزایش بار تسلیم آرماتور‌های کششی می‌شود. این عمل زمانیکه در پل‌ها با دهانه بلند بکار گرفته می‌شود نقش اصلی خود را نشان می‌دهد. زیرا در این پل‌ها به علت دهانه بزرگ معمولاً شاه تیر‌ها دچار تغییر شکل زیادی می‌شوند اما پیش تنیدگی باعث اعمال خیز منفی اولیه به تیر شده و خیز حداکثر آن را کاهش می‌دهد. مزیت بزرگ دیگر اعمال پیش‌تنیدگی در پل‌ها افزایش مقاومت خستگی المان‌ها می‌باشد. شاه تیر‌ها و پایه‌ی پل‌ها تحت بار متناوب ناشی از عبور و مرور وسایل نقلیه می‌باشند که همین امر باعث وقوع خستگی در این اعضا می‌شود. پیش‌تنیده کردن این اعضا باعث باربرداری آرماتور‌های کششی این اعضا شده و مقاومت خستگی عضو را به طرز چشمگیری بهبود می‌بخشد.

در مواقعی که امکان ایجاد یک شکاف سطحی بر روی سطح بتن وجود داشته باشد، روش مقاوم‌سازی به روش NSM انتخاب بسیار عاقلانه‌ای می‌باشد. این روش نیاز به آماده‌سازی سطح را به میزان بالایی کاهش می‌دهد و همچنین ریسک ایجاد شرایط بحرانی در اجرای موفق و مؤثر سیستم مقاوم سازی و نیاز به اجرای سیستم‌های Lay-Up در کارگاه را از بین می‌برد. به دلیل اینکه میلگرد و یا لمینیت در سطح بیشتری به بتن چسبیده، لذا در این سیستم هنگام انتقال یک نیروی مشابه در روش EBR میزان کمتری تنش برشی در بتن ایجاد می‌شود. از این رو طول توسعه (Development Length) در روش NSM بسیار کمتر بوده و می‌توان تقریباً از کل ظرفیت مقاومت FRP استفاده کرد پیش از آن که گسیختگی ناشی از چسبندگی حاصل شود. اجرای این سیستم نیاز به نیروی آموزش‌دیده خاصی ندارد و طراحی آن با در نظر گرفتن راهنمایی‌های ACI 440-2 انجام می‌شود.

به عبارت دیگر در روش NSM، نوارها یا میلگردهای مصالح مقاوم کننده در شیارهایی که در وجه کششی بتن ایجاد شده‌اند، چسبانده می‌شوند و پوشش سیمانی و یا چسب اپوکسی روی آن‌ها قرار می‌گیرد. به طور کلی برخی از مزایای روش‌های NSM  نسبت به روش EBR عبارت‌اند از: بهبود پیوستگی و انتقال نیرو به بتن اطراف به دلیل محصور شدن نوار داخل شیار، محافظت از نوار در برابر عوامل محیطی خارجی و عدم نیاز به آماده‌سازی سطحی بتن بعد از ایجاد شیارها.

مقاوم سازی ساختمان با ژاکت بتنی

یکی از روش‌های مقاوم‌سازی ساختمان‌های بتنی استفاده از پوشش بتنی در پیرامون المان‌های مختلف از قبیل دیوار برشی، ستون و تیر می‌باشد. در این روش ابتدا سوراخ‌های به فواصل معین در وجوه پیرامونی  المان‌های ضعیف ایجاد می‌گردد. سپس یک مش فولادی با آرماتورهای آجدار در پیرامون عضو مورد نظر قرار می‌گیرد. اندازه و فاصله این آرماتورهای فولادی با استفاده از نتایج تحلیلی طراحی می‌گردد. سپس سوراخ‌هایی ایجاد شده  توسط چسب اپوکسی پر شده و آرماتورهای دوخت L شکل  در داخل آن قرار می‌گیرد. قالب‌هایی  در پیرامون عضو قرارداد شده و داخل آن توسط بتن پر می‌گردد.  پوشش بتنی جدید به همراه آرماتورهای آن باعث افزایش مقاومت و شکل‌پذیری المان سازه‌ای موجود می‌گردد.  این روش می‌توانند برای افزایش مقاومت کمانشی ستون‌ها، مقاومت و شکل‌پذیری تیرها، ستون‌ها و دیوارهای برشی مورد استفاده قرار بگیرد.

میزان و فاصله سوراخ‌های ایجاد شده در عضو باید به گونه‌ای باشد که باعث ایجاد ضعف عمده  در المان موجود نگردد. همچنین در هنگام اجرای عملیات سوراخ‌کاری باید دقت نمود که  سر مته  باعث قطع آرماتور  ستون نگردد.  در صورت برخورد سرمته با آرماتور باید دستگاه  دریل  از سوراخ بیرون شده و سوراخ جدیدی در کنار آن ایجاد شود  تا هیچ آرماتوری قطع نگردد.

ژاکت بتنی یک روکش برای عضو بتنی است که از میلگردهای فولادی و بتن تشکیل شده است. برای اجرای ژاکت بتنی ابتدا شبکه‌ای از میلگردها را بر روی عضو قدیمی آرماتوربندی می‌کنند و سپس بعد از قالب‌بندی آن را بتن‌ریزی می‌کنند. ژاکت بتنی مقاومت خمشی و برشی ستون را افزایش می‌دهد و افزایش شکل‌پذیری ستون در این حالت کاملاً مشهود است.

برای اینکه بدانیم چه زمانی باید از این روش مقاوم‌سازی برای ستون را انتخاب کنیم باید شناخت درستی از خسارت‌های احتمالی ساختمان در وقوع زلزله داشته باشیم. از جمله مواردی که استفاده از ژاکت بتنی برای مقاوم‌سازی ستون مناسب به نظر می‌رسد می‌توان در مواردی که میزان آسیب‌های وارده به ستون زیاد باشد و یا در مواردی که ستون قادر به تحمل نیروهای فشاری و همچنین نیروهای جانبی وارده نباشد اشاره کرد.

مقاوم‌سازی با ژاکت فولادی

استفاده از ژاکت فلزی روشی مناسب برای مقاوم سازی ساختمان‌های بتنی بوده ضمن افزایش مقاومت و شکل‌پذیری اعضای این نوع سازه‌ها وزن قابل ملاحظه‌ای را نیز به ساختمان اضافه نمی‌نماید.  در این روش ورق‌های فلزی در محل آسیب‌پذیر ساختمان بر روی سطح بتنی عضو قرار گرفته و توسط بولت به عضو مربوطه متصل می‌گردد.

مقاوم‌سازی با ژاکت فلزی بر حسب مورد می‌تواند به صورت دورپیچ، نواری و یا موضعی باشد. در مواردی که اتصال تیرها و ستون‌های ساختمان بتنی ضوابط شکل‌پذیری از جمله فاصله بین خاموت‌ها را رعایت نمی‌کنند ورق‌ها پیرامون تیر و ستون قرار گرفته و با جوشکاری به یکدیگر متصل می‌گردند. همچنین این ورق‌ها  باید با بولت  به تیرها و ستون‌ها  وصل گردند تا بتوانند در تحمل لنگرهای خمشی و نیروهای برشی ایجاد شده در اتصال مشارکت نمایند. ورق‌های فلزی پیرامونی به علاوه با ایجاد محصور شدگی در محل اتصال تیرها و ستون‌ها خردشدگی بتن را به تأخیر انداخته و باعث افزایش مقاومت فشاری آن می‌گردند.

همچنین برای مقاوم سازی ستون‌های ضعیف سازه که فاقد آرماتورهای عرضی و یا طولی کافی می‌باشند استفاده از ژاکت فلزی مرسوم است.  برای این کار نیز مشابه قبل ورق‌های فلزی در اطراف ستون قرار گرفته و توسط بولت به ستون متصل می‌گردند.این ورق‌ها همچنین در بالا و پایین ستون باید به نحو مناسبی به تیرها و فونداسیون متصل گردند.استفاده از ژاکت فلزی برای مقاوم سازی ستون‌ها ضمن افزایش مقاومت برشی و خمشی ستون با ایجاد تنش محصورشدگی مقاومت فشاری بتن را نیز افزایش داده و همچنین از کمانش آرماتورهای طولی جلوگیری می‌نماید.

در مواردی که هدف مقاوم‌سازی تنها افزایش مقاومت برشی تیر و یا جبران کمبود خاموت در ستون‌ها برای جلوگیری از کمانش آرماتورهای طولی باشد به جای ورق فلزی  می‌توان از نوارهای فلزی پیرامونی استفاده نمود.

برای این که نیروی برشی بتواند بین عضو بتنی و ورق فلزی منتقل گردد باید اتصال مناسب بین آن دو برقرار گردد. روش مرسوم برای ایجاد این اتصال  آن است که قبل از نصب ورق‌ها  سوراخ‌هایی در عضو بتنی و ورق‌های فلزی  ایجاد شده،  سپس ورق‌ها بر روی عضو قرار گرفته و بولت ها داخل سوراخ نصب می‌گردند، سپس فضای باقی‌مانده داخل سوراخ توسط اپوکسی پر می‌گردد.

به طور کلی می‌توان کاربرد روش مقاوم سازی با ژاکت فولادی را در موارد زیر دسته‌بندی کرد :

  • محصورسازی بتن
  • افزایش مقاومت برشی عضو
  • افزایش مقاومت خمشی عضو
  • افزایش سختی جانبی سازه (تا حدودی)

از جمله مزیت‌های  این روش امکان اصلاح اغلب مشکلات سازه‌ای در قاب‌های بتنی می‌باشد.

مقاوم‌سازی با اضافه نمودن دیوار برشی

افزایش مقاومت و سختی سیستم و همچنین کاهش نیاز شکل پذیری اعضا و اجزا سازه را می توان با اضافه نمودن میان قاب های صفحه ای بتن مسلح و یا دیارهای بنایی ایجاد نمود که یکی ااز رایج ترین روش ها در سازه های بتنی است. دیواهای اضافه شده می توانند به صورت دیوارهای برششی جدید که در محل اجرا شده و یا دیوارب بنایی شاتکریت شدباشند

همچنین به علت سختی بیشتر دیوار برشی نسبت به بادبند، تعداد دهانه‌های لازم برای تعبیه دیوار برشی کمتر از دهانه‌های لازم برای بادبند است که در نتیجه طرح مقاوم سازی مشکلات کمتری در زمینه معماری بوجود می‌آورد. برای اتصال دیوار به ستون باید از خاموت یا بولت به عنوان برشگیر در ارتفاع ستون استفاده کرد. همچنین برای اتصال دیوار به سقف هم باید تمهیداتی اندیشید. نکته مهم دیگری هم که در مورد استفاده از دیوار برشی باید به آن توجه کرد این است که نیروی زیادی در پی دیوار برشی بوجود می‌آید، که برای انتقال این نیرو‌ها به زمین احتمالاً نیاز به تعبیه شمع وجود دارد.

از نکات مهمی که در مورد اجرای دیوارهای برشی باید مد نظر قرار گیرد، افزایش وزن سازه، تقارن در سیستم باربر جانبی جدید و همچنین تقویت فونداسیون به خاطر افزایش نیروی های واژگونی می باشد.

مقاوم‌سازی با استفاده از مهاربندهای فولادی

اضافه نمودن مهاربندهای فولادی به به سازه بتنی، افزایش سختی، کاهش نیاز شکل پذیری و افزایش مقاومت برشی سیستم را به همراه خواهد داشت ضمن آنکه افزایش ناچیز را در وزن سازه موجب می شود. عموما با اتفاده از سیستم های مهاربندی واگرا (EBF) در ساختمان های بتنی به دلیل پر هزینه بودن و مشکلات موجود در اجرا و تامین جزییات تیر پی وند مرسوم نمی باشد. اما انواع سیستم های مهاربندی همگرا می تواند در این نوع بهسازی مورد توجه قرار گیرد.

مقاوم‌سازی با استفاده از جداگرهای لرزه‌ای

نصب جداسازهای لرزه‌ای در تراز پایه ساختمان، با هدف جداسازی حرکتی بین سازه و زمین صورت می‌گیرد. جداسازهای لرزه‌ای، المان‌هایی هستند که سختی جانبی آن‌ها نسبت به سختی محوری‌شان بسیار کمتر می‌باشد، لذا با وقوع زلزله، این المان‌ها می‌بایستی مانع انتقال نیرو به سازه‌ی اصلی شوند و سازه‌ی اصلی یک حرکت صلب را در حین وقوع لرزش‌های زمین تجربه نماید. عملکرد جداگرها فقط در محدوده خاصی از جرم و ارتفاع ساختمان مطلوب است و به همین دلیل این روش بصورت خیلی محدود و فقط برای ساختمان‌های دارای وزن و ارتفاع مشخصی مؤثر بوده و به همین دلیل کمتر از سایر روش‌ها در جهان مورد استقبال کارشناسان قرار گرفته و در پروژه‌های بسیار کمی مورد استفاده قرارگرفته است.

مقاوم‌سازی با استفاده از سیستم‌های جاذب انرژی (دمپر)

در روش‌های کنترل غیر فعال سازه نظیر استفاده از مستهلک کننده‌های ویسکوز و ویسکوالاستیک، جذب انرژی حاصل از حرکات نیرومند زمین توسط مستهلک کننده‌ها صورت گرفته و به سیستم سازه اجازه داده نمی‌شود که وارد ناحیه غیر خطی گردد. این امر موجب می‌شود که مقاومت سازه در برابر زلزله‌های با دوره بازگشت طولانی‌تر (که طبیعتاً شدیدتر نیز می‌باشند) بیشتر گردد یا به تعبیر دیگر احتمال فروریزش سازه در برابر این زلزله‌ها کاهش می‌یابد .سیستم های جاذب یا مستهلک کننده انرژی (Dampers) بر پایه افزایش ضریب میرایی ساختمان بنا شده‌اند. مهمترین تأثیر میرایی، کاهش دامنه نوسان و پاسخ ساختمان نسبت به نیروهای وارده می باشد و بدین وسیله قسمت عمده‌ای از انرژی ارتعاشی را قبل از رسیدن پاسخ سازه به حد نهایی به هدر می‌دهند. اتلاف کننده‌های انرژی ممکن است در مهاربندی‌ها، اتصالات و اجزای غیر سازه‌ای و یا دیگر مکان‌های مناسب در ساختمان‌های موجود قرار داده شوند، لیکن ساده‌ترین و پرکاربردترین آن‌ها استفاده از میراگر در مهاربندها می‌باشد که می‌توان از آن‌ها در تمامی طبقات ساختمان سود جست در برخی از انواع میراگرها ملاحظات زیبایی نیز مد نظر قرار گرفته شده است تا چنانچه بصورت نمایان بکار برده شوند مشکلی از لحاظ معماری ایجاد ننماین



:: موضوعات مرتبط: مقاوم سازی , سازه بتنی , ,
تاریخ : سه شنبه 9 مرداد 1397
بازدید : 81
نویسنده : افزیر

 

 

 

 

امروزه یافتن راه‌حل مناسب جهت مقاوم سازی ساختمان ها و ترمیم و تقویت سازه‌های صنایع فولاد و سیمان، حمل‌ونقل، معادن، صنعت نفت و گاز و پتروشیمی، سازه‌های دریایی، صنعت آب و فاضلاب، صنایع دفاعی – نظامی و تأسیسات شهری، با توجه به اینکه جایگزین نمودن سازه‌های موجود با سازه‌های جدید در اغلب موارد از نظر اقتصادی مقرون به صرفه نیست، اهمیت شایانی پیدا کرده است. انتخاب غلط یک شیوه‌ نامناسب مقاوم‌سازی ساختمان و تعمیر یا تقویت یک سازه، حتی می‌تواند عملکرد سازه را بدتر هم بکند. در مقایسه با ساختن یک سازه‌ جدید، تقویت سازه موجود حتی می‌تواند پیچیده‌تر باشد؛ زیرا شرایط سازه‌ای از قبل ثابت شده است. علاوه بر این همواره دسترسی به نواحی که نیاز به تقویت سازه دارند ساده نیست. روش‌های سنتی استفاده شده به عنوان تکنیک‌های تقویت ساختمان در برابر زلزله و بارهای ثقلی مرده و زنده، نظیر انواع مختلف پوشش‌های مسلح (نظیر ژاکت فولادی و ژاکت بتنی)، شاتکریت، کابل‌های پس تنیدگی قرار گرفته در خارج از سازه و استفاده از صفحات و ورق‌های فولادی مقید شده به سازه، معمولاً نیاز به فضای زیادی دارند و اغلب در برابر شرایط محیطی آسیب‌پذیر نیز می‌باشند.

در مجموع در موارد ذیل، ترمیم و تقویت سازه های مختلف صنایع و ساختمان ها مورد نیاز است و اهم فعالیت های یک شرکت مقاوم سازی نظیر شرکت افزیر برطرف نمودن این مشکلات می‌باشد.

  • مقاوم سازی و تقویت سازه ها جهت برآورده ساختن ضوابط موجود در آیین نامه های بارگذاری و زلزله کنونی که ساختمان موجود، مقاومت کافی در برابر نیروهای وارده ثقلی و زلزله را ندارد. یکی از مهمترین کارهای شرکت مقاوم سازی افزیر مطالعات مورد نیاز در این زمینه، علل الخصوص برآورد و تخمین آسیب پذیری سازه ها و ارائه راهکار برای مقاوم سازی ساختمان ها در برابر زلزله می‌باشد
  •  مقاوم‌سازی ساختمان‌هایی که قرار است تغییر کاربری بدهند. در این حالت با توجه به اینکه بارهای زنده، ضریب اهمیت ساختمان و همچنین سطح عملکرد ساختمان تغییر پیدا می‌کند، نیاز به طراحی مجدد سازه و تعیین سطح عملکرد آن توسط شرکت مقاوم‌سازی می‌باشد
  •  مقاوم سازی ساختمان‌ها توسط شرکت مقاوم‌سازی که طبقات سازه‌ای آن قرار است افزایش پیدا کند.
  •  مقاوم‌سازی ساختمان‌هایی که اعضای سازه‌ای آن شبیه تیرها ستون‌ها و سقف‌ها دچار خوردگی و پوسیدگی شده باشند. انواع ساختمان‌های مختلف که دچار این مشکلات شده‌اند را می‌توان با روش‌های مقاوم‌سازی ارائه شده توسط شرکت مقاوم‌سازی افزیر تقویت کرد.
  •  مقاوم‌سازی ساختمان‌هایی که در اثر ضعف سازه‌ای، ترک‌هایی در سازه‌های بتنی و یا ترک‌ها و اعوجاج و لهیدگی در المان‌ها و جوش سازه‌های فولادی مشاهده می‌گردد.
  •  مقاوم‌سازی ساختمان‌های خسارت‌دیده پس از وقوع زلزله. در این حالت نیز هدف بازسازی سازه آسیب‌دیده و مقاوم‌سازی ساختمان‌ها در برابر زلزله‌های آتی می‌باشد.
  • مقاوم سازی ساختمان هایی که در حین ساخت خطاهای اجرایی باعث بروز ضعف سازه ای در آنها شده است، نظیر کیفیت و اجرای نامناسب بتن ریزی، عدم کارگذاری دقیق میلگرد در اجزای سازه ای در ساختمان‌های بتنی، مقاومت پایین بتن و استفاده از مصالح نامرغوب در سازه های بتن آرمه و عدم جوشکاری نامناسب و غیر قابل قبول در سازه های فولادی.
  •  مقاوم سازی در ساختمان هایی که در مرحله طراحی به دقت محاسبات سازه ای بر روی آنها صورت نگرفته است. شرکت مقاوم سازی افزیر با استفاده از آئین نامه های مختلف و روشهای اجزاء محدود، توانایی برطرف نمودن ضعف های سازه ای و ارائه راهکار برای مقاوم سازی ساختمان ها در برابر زلزله و تقویت سازه های بتنی و فولادی صنایع مختلف را دارد.
  •  مقاوم سازی ساختمان ها و تقویت سازه های مختلف، توسط روش های سنتی و روش های نوین مقاوم سازی می‌تواند صورت گیرد.

شرکت مقاوم سازی افزیر در صنایع زیر راهکارهای مختلفی جهت آسیب شناسی و برطرف نمودن ضعف های سازه انواع سازه ها ارائه می‌دهد:

  • بهسازی لرزه ای ساختمان های مسکونی و بهسازی لرزه ای سازه های مختلف ارائه راهکارهای
  • مقاوم سازی سازه های مسکونی، اداری و تجاری شامل ترمیم، تقویت و مقاوم سازی سازه های بتنی، سازه های فولادی و نیز مقاوم سازی سازه های بتن پیش ساخته
  • مقاوم سازی ساختمان های بلند مرتبه
  • مقاوم سازی ساختمان پارکینگ‌ها
  • مقاوم سازی ساختمان بناهای تاریخی در برابر زلزله
  • تقویت سازه های استادیوم‌ ها
  • مقاوم سازی ساختمان بیمارستان ‌ها در برابر زلزله با توجه به اهمیت بالای این سازه ها پس از وقوع زلزله
  • مقاوم سازی ساختمان های مدارس در برابر زلزله
  • مقاوم سازی با نیلینگ و میکروپایل (تثبیت خاک)
  • تقویت سازه ای ساختمان های نیروگاه ها
  • مقاوم سازی و تقویت ساختمان ها و سازه های صنایع سیمان
  • مقاوم سازی سازه های موجود در کارخانجات تولید و فرآوری مواد شیمیایی  
  • تقویت سازه ای ساختمان های کارخانه های فولاد  
  • مقاوم سازی ساختمان های کارخانه های مواد غذایی و آشامینی            
  • مقاوم سازی ساختمان های کارخانه‌های مختلف تولیدی         
  • تقویت سازه های مجتمع‌های کاغذ سازی و تولید خمیر کاغذ
  • مقاوم سازی ساختمان های پالایشگاه‌ها و پتروشیمی
  • مقاوم سازی ساختمان های موجود در صنعت نفت و گاز و پتروشیمی
  • ترمیم، تقویت و مقاوم سازی خطوط انتقال نفت و گاز           
  • مقاوم سازی ساختمان سازه های ساحلی و سازه های بنادر
  • مقاوم سازی ساختمان ها و سازه‌های دریائی
  • مقاوم سازی سازه های فرا ساحلی          
  • تقویت سازه های و  ساختمان اسکله‌ها، لنگرگاه، پایه پل‌ها و بارانداز بنادر          
  • تقویت ساختمان تاسیسات دریایی و اسکله‌ها 
  • مقاوم سازی ساختمان در صنعت حمل و نقل نظیر مقاوم سازی تونل، مقاوم سازی عرشه، کول و پایه پلها، مقاوم سازی پل های راه آهن
  • تقویت ساختمان های فرودگاه ها نظیر برج های مراقبت و مقاوم سازی در برابر زلزله ساختمان های مترو
  • مقاوم سازی ساختمان های موجود در کارخانجات سیمان       
  • مقاوم سازی ساختمانهای صنعت آب و فاضلاب
  • حفاظت سازه ها و ساختمان های مختلف در مقابل انفجار
  • مقاوم سازی ساختمان های صنایع دفاعی و نظامی
  • تقویت ساختمان های معادن
  • مقاوم سازی ساختمان های تاسیسات شهری Utilities شامل ترمیم و تقویت سازه های تاسیسات گاز، بهسازی لرزه ای تاسیسات برق شهری و برون شهری، مقاوم سازی بناهای تاسیسات آبی، بهسازی، ترمیم و بازسازی تاسیسات فاضلاب، مقاوم سازی ساختمانهای تاسیسات مخابراتی و ارتباطی در برابر زلزله

پیدا کردن راه حلی مناسب به منظور ارتقاء مقاومت و تقویت باربری سازه‌ها و ساختمان‌ها در برابر زلزله و سایر نیروها، همیشه یکی از مهمترین مسائل و مشکلات طراحان و محاسبان سازه ها، پیمانکاران، مجریان ساختمان ها و نیز شرکت های مقاوم سازی بوده است. نیاز گسترده و روز افزون جامعه به ساختمان و مسکن و ضرورت استفاده از روش ها و مصالح جدید به منظور افزایش سرعت ساخت، سبک سازی، افزایش عمر مفید و نیز مقاوم سازی ساختمان در برابر زلزله را بیش از پیش مطرح کرده است، این امر سبب شده است که تعداد زیادی شرکت مقاوم سازی امروزه در امر بهسازی لرزه ای سازه ها و تقویت سازه ها در برابر زلزله فعالیت ‌کنند. از طرفی حرکت استمراری علم در عرصه مهندسی سازه مهندسی زلزله موجب شده است تا برای بهسازی و مقاوم سازی در سالهای اخیر از روشهای نوین و مصالح جدیدی بهره گرفته شود که تا کنون پیشینیه چندانی در صنعت ساختمان سازی نداشته اند. در میان این فناوری ها، FRP (مصالح کامپوزیتی پلیمری تقویت شده با الیاف) از جایگاه ویژه ای برخوردار است تا آنجا که به نظر برخی از متخصصان، FRP را باید مصالح هزاره سوم نامید که در جدیدی را در پیش روی مهندسان سازه و ساختمان و نیز شرکت های مقاوم سازی گشوده است، به گونه‌ای که امروزه سازه‌ های متعددی در سراسر دنیا توسط مهندسین شرکت مقاوم سازی، با FRP ها مقاوم سازی می‌گردند. از این رو استفاده از مصالح FRP جهت مقاوم سازی و تقویت سازه های بتن‌ آرمه و حتی سایر سازه ها و اعضای بتنی و فولادی به عنوان یک فن¬آوری نوین در مهندسی زلزله و سازه مورد توجه قرار گرفته است. کنترل کیفی ساخت، مقاومت مکانیکی و مقاومت شیمیایی بالا در برابر اثرات محیط از جمله مزایای FRP ها محسوب می‌گردد.

شرکت مقاوم سازی افزیر به عنوان پیشرو در زمینه ارائه راهکاری نوین مقاوم سازی سازه های ساختمانی و صنعتی با تکیه بر سابقه درخشان در زمینه اجرای پروژه های مقاوم سازی با استفاده از تکنولوژی ها و روش های بهسازی روز دنیا و با استفاده از کادر مجرب مهندسی و اجرایی در زمینه ارائه مشاوره فنی و اجرای راهکارهای مقاوم سازی در پروژه های مهندسی کوچک و بزرگ آماده ارائه خدمات مشاوره ای و اجرایی می باشد.

 

 



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , ,
تاریخ : چهار شنبه 29 آذر 1396
بازدید : 98
نویسنده : افزیر

زلزله‌های اخیر در سراسر جهان، ضعف پایه پل ها و خسارات جانی و مالی فراوانی را که در اثر تخریب آن‌ها رخ می‌دهد را آشکار کرده‌اند. در موارد بسیاری که این پایه ها شناور و زیر آب هستند، اجرای مقاوم سازی پایه پل دشوارتر می‌شود.

یکی از مشکل‌ترین حالات مقاوم سازی پایه پل، هنگامی است که پایه پل دارای ابعاد بزرگی است و علاوه بر آن، مغروق نیز هست. روش اخیر ارائه شده توسط مهندسین مقاوم سازی پایه پل به کمک مصالح کامپوزیت پلیمری FRP شرکت افزیر، روشی بسیار ایده‌آل برای این‌گونه سازه هاست و شامل ترکیب روش اجرای FRP به صورت تر و استفاده از پانل های پیش‌ساخته FRP می‌باشد.

مهندسین شرکت مقاوم سازی افزیر پس از بررسی دقیق شرایط کنونی پایه پل، طراحی های لازم برای تقویت محوری، برشی و خمشی پایه پل را انجام داده و با ارائه طرح مقاوم سازی پایه پل به کمک مصالح کامپوزیت پلیمری شرکت افزیر به کارفرمای محترم، پایه پل موردنظر حتی از پیش از وقوع خرابی در آن نیز مقاوم تر می‌نمایند.



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , ,
:: برچسب‌ها: مقاوم سازی پایه پل+مقاوم سازی+frp+مصالح کامپوزیت ,
تاریخ : سه شنبه 28 آذر 1396
بازدید : 71
نویسنده : افزیر

مقاوم سازی دال بتنی با FRP به منظور افزایش ظرفیت باربری دال، افزایش مقاومت دال در برابر خوردگی، کمبود مقاومت فشاری بتن، افزایش مقاومت خمشی، برشی و… بطور موضعی انجام می‌شود. دال ها عملا وظیفه تحمل بارهای قائم را دارند ولی چون عملکرد دیافراگم افقی نیز دارند، باید با اعضای مقاوم جانبی سازه اتصال داشته و از سختی و مقاومت کافی برخوردار باشند. در واقع مقاوم سازی دال های بتنی با FRP می تواند ظرفیت خمشی آن را افزایش دهد. 

 



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , سازه بتنی , ,
:: برچسب‌ها: مقاوم سازی دال بتنی , مقاوم سازی دال بتنی با frp , کاربرد frp در دال بتنی , دال بتنی ,
به وبلاگ من خوش آمدید

نام :
وب :
پیام :
2+2=:
(Refresh)

تبادل لینک هوشمند

برای تبادل لینک ابتدا ما را با عنوان شرکت مقاوم سازی افزیر و آدرس afzir.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.






RSS

Powered By
loxblog.Com